668
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Formulation development of Lornoxicam loaded heat triggered ocular in-situ gel using factorial design

ORCID Icon, , , , , , , & show all
Pages 601-615 | Received 21 Jun 2023, Accepted 25 Sep 2023, Published online: 06 Oct 2023

References

  • Kessel L, Tendal B, Jørgensen KJ, et al. Post-cataract prevention of inflammation and macular edema by steroid and nonsteroidal anti-inflammatory eye drops: a systematic review. Ophthalmology. 2014;121(10):1915–1924. doi:10.1016/j.ophtha.2014.04.035.
  • El-Harazi SM, Feldman RM. Control of intra-ocular inflammation associated with cataract surgery. Curr Opin Ophthalmol. 2001;12(1):4–8. doi:10.1097/00055735-200102000-00002.
  • Salinger CL, Gaynes BI, Rajpal RK. Innovations in topical ocular corticosteroid therapy for the management of postoperative ocular inflammation and pain. Am J Manag Care. 2019;25(12 Suppl):S215–S226.
  • Malik A, Sadafale A, Gupta YK, et al. A comparative study of various topical nonsteroidal anti-inflammatory drugs to steroid drops for control of post cataract surgery inflammation. Oman J Ophthalmol. 2016;9(3):150–156. doi:10.4103/0974-620X.192268.
  • Kang C, Keam SJ, Shirley M, et al. Loteprednol etabonate (submicron) ophthalmic gel 0.38%: a review in post-operative inflammation and pain following ocular surgery. Clin Drug Investig. 2020;40(4):387–394. doi:10.1007/s40261-020-00899-2.
  • Oka T, Shearer T, Azuma M. Involvement of cyclooxygenase-2 in rat models of conjunctivitis. Curr Eye Res. 2004;29(1):27–34. doi:10.1080/02713680490513164.
  • Sivaprasad S, Bunce C, Wormald R. Non-steroidal anti-inflammatory agents for cystoid macular oedema following cataract surgery: a systematic review. Br J Ophthalmol. 2005;89(11):1420–1422. doi:10.1136/bjo.2005.073817.
  • Pruss T, Stroissnig H, Radhofer-Welte S, et al. Overview of the pharmacological properties, pharmacokinetics and animal safety assessment of lornoxicam. Postgrad Med J. 1990;66 Suppl 4):S18–S21.
  • Balfour JA, Fitton A, Barradell LB. Lornoxicam: a review of its pharmacology and therapeutic potential in the management of painful and inflammatory conditions. Drugs. 1996;51(4):639–657. doi:10.2165/00003495-199651040-00008.
  • Hamza YE-S, Aburahma MH. Design and in vitro evaluation of novel sustained-release double-layer tablets of lornoxicam: utility of cyclodextrin and xanthan gum combination. Aaps Pharmscitech. 2009;10(4):1357–1367. doi:10.1208/s12249-009-9336-9.
  • Aytekin E, Öztürk N, Vural İ, et al. Design of ocular drug delivery platforms and in vitro – in vivo evaluation of riboflavin to the cornea by non-interventional (epi-on) technique for keratoconus treatment. J Control Release. 2020;324:238–249. doi:10.1016/j.jconrel.2020.05.017.
  • Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66. doi:10.1208/s12249-023-02516-9.
  • Polat HK, Sedat Ü. Development of besifloxacin HCL loaded ocular in situ gels ın vitro characterization study. J Facul Pharm Ankara Univer. 2023;47(1):4–4.
  • Polat HK, Kurt N, Aytekin E, et al. Novel drug delivery systems to ımprove the treatment of keratitis. J Ocul Pharmacol Ther. 2022;38(6):376–395. doi:10.1089/jop.2021.0127.
  • Srividya B, Cardoza RM, Amin P. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release. 2001;73(2–3):205–211. doi:10.1016/s0168-3659(01)00279-6.
  • Liu Z, Li J, Nie S, et al. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315(1–2):12–17. doi:10.1016/j.ijpharm.2006.01.029.
  • Polat H. In situ gels triggered by temperature for ocular delivery of dexamethasone and dexamethasone/SBE-β-CD complex. J Res Pharm. 2022;26(4):873–883.
  • Polat HK. Design of metformin HCl and moxifloxacin HCl loaded thermosensitive ın situ gel. J Res Pharm. 2022;26(5):1230–1241.
  • Bai L, Lei F, Luo R, et al. Development of a thermosensitive ın-situ gel formulations of vancomycin hydrochloride: design, preparation, ın vitro and ın vivo evaluation. J Pharm Sci. 2022;111(9):2552–2561. doi:10.1016/j.xphs.2022.04.011.
  • Zhang C, Xu T, Zhang D, et al. Disulfiram thermosensitive in-situ gel based on solid dispersion for cataract. Asian J Pharm Sci. 2018;13(6):527–535. doi:10.1016/j.ajps.2018.02.010.
  • Jansook P, Pichayakorn W, Muankaew C, et al. Cyclodextrin–poloxamer aggregates as nanocarriers in eye drop formulations: dexamethasone and amphotericin B. Drug Dev Ind Pharm. 2016;42(9):1446–1454. doi:10.3109/03639045.2016.1141932.
  • Salama AH, Shamma RN. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Int J Pharm. 2015;492(–2):28–39. doi:10.1016/j.ijpharm.2015.07.010.
  • Ünal S, Polat H, Yuvali D, et al. Development of in situ gel containing CUR: HP-β-CD inclusion complex prepared for ocular diseases: formulation, characterization, anti-inflammatory, anti-oxidant evaluation and comprehensive release kinetic studies. J Res Pharm. 2023;27(1):97–119.
  • El-Kamel A. In vitro and in vivo evaluation of pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002;241(1):47–55. doi:10.1016/s0378-5173(02)00234-x.
  • Qi H, Chen W, Huang C, et al. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm. 2007;337(1–2):178–187. doi:10.1016/j.ijpharm.2006.12.038.
  • Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, et al. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int J Pharm. 2011;411(1–2):128–135. doi:10.1016/j.ijpharm.2011.03.054.
  • Zhang Y, Huo M, Zhou J, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. Aaps J. 2010;12(3):263–271. doi:10.1208/s12248-010-9185-1.
  • Puthli S, Vavia PR. Stability studies of microparticulate system with piroxicam as model drug. Aaps Pharmscitech. 2009;10(3):872–880. doi:10.1208/s12249-009-9280-8.
  • Aksungur P, Demirbilek M, Denkbaş EB, et al. Development and characterization of cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release. 2011;151(3):286–294. doi:10.1016/j.jconrel.2011.01.010.
  • Yu J, Xu X, Yao F, et al. In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. Int J Pharm. 2014;470(1–2):151–157. doi:10.1016/j.ijpharm.2014.04.053.
  • Yavuz B, Pehlivan SB, Vural İ, et al. In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci. 2015;104(11):3814–3823. doi:10.1002/jps.24588.
  • Wilhelmus KR. The draize eye test. Surv Ophthalmol. 2001;45(6):493–515. doi:10.1016/s0039-6257(01)00211-9.
  • Alpay A, Evren C, Bektaş S, et al. Effects of the folk medicinal plant extract ankaferd blood stopper® on the ocular surface. Cutan Ocul Toxicol. 2011;30(4):280–285. doi:10.3109/15569527.2011.565011.
  • Pignatello R, Bucolo C, Spedalieri G, et al. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials. 2002;23(15):3247–3255. doi:10.1016/s0142-9612(02)00080-7.
  • polat hk, sedat Ü. Development OF IN sıtu gel formulatıon contaınıng bısphosphonate-loaded plga mıcrospheres FOR bone regeneratıon IN maxıllofacıal surgery applıcatıons; formulatıons, ın vıtro characterızatıon and release kınetıc studıes. J Facul Pharm Ankara University. 2022;46(3):993–1008.
  • Wanka G, Hoffmann H, Ulbricht W. Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules. 1994;27(15):4145–4159. doi:10.1021/ma00093a016.
  • Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64. doi:10.5497/wjp.v2.i2.47.
  • Pawar PK, Katara R, Majumdar DK. Design and evaluation of moxifloxacin hydrochloride ocular insert. Acta Pharm. 2012;62(1):93–104. doi:10.2478/v10007-012-0002-5.
  • Szalai B, Jójárt-Laczkovich O, Kovács A, et al. Design and optimization of ın situ gelling mucoadhesive eye drops containing dexamethasone. Gels. 2022;8(9):561. doi:10.3390/gels8090561.
  • Abd Elhady SS, Mortada ND, Awad GA, et al. Development of in situ gelling and muco adhesive mebeverine hydrochloride solution for rectal administration. Saudi Pharma J. 2003;11:159–171.
  • Gözcü S, Polat KH. Thermosensitive In situ gelling system for dermal drug delivery of rutin. Turk J Pharm Sci. 2023;20(2):78–83. doi:10.4274/tjps.galenos.2022.00334.
  • Fathalla ZM, Vangala A, Longman M, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur J Pharm Biopharm. 2017;114:119–134. doi:10.1016/j.ejpb.2017.01.008.
  • Timur SS, Şahin A, Aytekin E, et al. Design and in vitro evaluation of tenofovir-loaded vaginal gels for the prevention of HIV infections. Pharm Dev Technol. 2018;23(3):301–310. doi:10.1080/10837450.2017.1329835.
  • Cabana A, Ait-Kadi A, Juhasz J. Study of the gelation process of polyethylene oxidea–polypropylene oxideb–polyethylene oxideacopolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci. 1997;190(2):307–312. doi:10.1006/jcis.1997.4880.
  • Polat HK, Bozdağ Pehlivan S, Özkul C, et al. Development of besifloxacin HCl loaded nanofibrous ocular inserts for the treatment of bacterial keratitis: ın vitro, ex vivo and in vivo evaluation. Int J Pharm. 2020;585:119552. doi:10.1016/j.ijpharm.2020.119552.
  • Polat HK, Gözcü S, Akşit H. Design of thymol loaded dental In situ gels; In vitro evaluation. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2022;13(3):475–484. doi:10.22312/sdusbed.1150492.
  • Shen T, Yang Z. In vivo and in vitro evaluation of in situ gel formulation of pemirolast potassium in allergic conjunctivitis. Drug Des Devel Ther. 2021;15:2099–2107. doi:10.2147/DDDT.S308448.
  • Supramaniam J, Adnan R, Mohd Kaus NH, et al. Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int J Biol Macromol. 2018;118(Pt A):640–648. doi:10.1016/j.ijbiomac.2018.06.043.
  • Ünal S, Varan G, Benito JM, et al. Insight into oral amphiphilic cyclodextrin nanoparticles for colorectal cancer: comprehensive mathematical model of drug release kinetic studies and antitumoral efficacy in 3D spheroid Colon tumors. Beilstein J Org Chem. 2023;19(1):139–157. doi:10.3762/bjoc.19.14.
  • Paolino D, Tudose A, Celia C, et al. Mathematical models as tools to predict the release kinetic of fluorescein from lyotropic colloidal liquid crystals. Materials. 2019;12(5):693. doi:10.3390/ma12050693.
  • Ünal S, Aktaş Y. Bisphosphonate-loaded PLGA microspheres for bone regeneration in dental surgery: formulation, characterization, stability, and comprehensive release kinetic studies. Int J Polym Mat Polym Biomater. 2023;72(1):89–100. doi:10.1080/00914037.2022.2082425.
  • Abend AM, Hoffelder T, Cohen MJ, et al. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? Aaps J. 2023;25(3):44–22. doi:10.1208/s12248-015-9830-9.
  • Joseph J, B N VH, D RD. Experimental optimization of lornoxicam liposomes for sustained topical delivery. Eur J Pharm Sci. 2018;112:38–51. doi:10.1016/j.ejps.2017.10.032.
  • Pezik E, Gulsun T, Sahin S, et al. Development and characterization of pullulan-based orally disintegrating films containing amlodipine besylate. Eur J Pharm Sci. 2021;156:105597. doi:10.1016/j.ejps.2020.105597.
  • Samimi M, Mahboobian M, Mohammadi M. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Hum Exp Toxicol. 2021;40(12):2039–2047. doi:10.1177/09603271211017314.
  • Wangsawangrung N, Choipang C, Chaiarwut S, et al. Quercetin/hydroxypropyl-β-Cyclodextrin ınclusion complex-loaded hydrogels for accelerated wound healing. Gels. 2022;8(9):573. doi:10.3390/gels8090573.
  • Polat HK, Kurt N, Aytekin E, et al. Design of besifloxacin HCl-loaded nanostructured lipid carriers: in vitro and ex vivo evaluation. J Ocul Pharmacol Ther. 2022;38(6):412–423. doi:10.1089/jop.2022.0008.
  • Pokharkar V, Patil V, Mandpe L. Engineering of polymer-surfactant nanoparticles of doxycycline hydrochloride for ocular drug delivery. Drug Deliv. 2015;22(7):955–968. doi:10.3109/10717544.2014.893381.
  • Agnihotri SM, Vavia PR. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomedicine. 2009;5(1):90–95. doi:10.1016/j.nano.2008.07.003.
  • Gonzalez-Mira E, Egea MA, Garcia ML, et al. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces. 2010;81(2):412–421. doi:10.1016/j.colsurfb.2010.07.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.