102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design of a pilot plant-type pharmaceutical reactor to address the problem of interchangeability of generic semisolid formulations

, , , , , & show all
Pages 703-714 | Received 30 Aug 2023, Accepted 22 Oct 2023, Published online: 31 Oct 2023

References

  • Edwards LD, Fox AW, Stonier PD. Principles and practice of pharmaceutical medicine: third edition. Princ. Pract. Pharm. Med. Third Ed. 2010;1:250–300. doi:10.1002/9781444325263.
  • Real D, Formica ML, Picchio ML, et al. Manufacturing techniques for nanoparticles in drug delivery. Drug Deliv. Nanomater. 2022;1:23–48. doi:10.1201/9781003168584-2.
  • Sarkis M, Bernardi A, Shah N, et al. Emerging challenges and opportunities in pharmaceutical manufacturing and distribution. Process. 2021;9(3):457. doi:10.3390/pr9030457.
  • van Heugten AJP, Vromans H. Scale up of semisolid dosage forms manufacturing based on process understanding: from lab to industrial scale. AAPS PharmSciTech. 2018;19(5):2330–2334. doi:10.1208/S12249-018-1063-7.
  • Felton LA. Pharmaceutical process scale-up. 3rd ed. 2012;38:512–512. doi:10.3109/03639045.2011.633523.
  • Lee SL, O’Connor TF, Yang X, et al. Modernizing pharmaceutical manufacturing: from batch to continuous production. J Pharm Innov. 2015;10(3):191–199. doi:10.1007/S12247-015-9215-8/METRICS.
  • Stafford J. Calculating the risk of batch failure in the manufacture of drug products. 1999;25:1083–1091. doi:10.1081/DDC-100102273.
  • Schaber SD, Gerogiorgis DI, Ramachandran R, et al. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: a case study. Ind Eng Chem Res. 2011;50(17):10083–10092. doi:10.1021/IE2006752/ASSET/IMAGES/IE-2011-006752_M005.GIF.
  • DiMasi JA, Hansen RW, Grabowski HG, et al. Cost of innovation in the pharmaceutical industry. J Health Econ. 1991;10(2):107–142. doi:10.1016/0167-6296(91)90001-4.
  • Suresh P, Basu PK. Improving pharmaceutical product development and manufacturing: impact on cost of drug development and cost of goods sold of pharmaceuticals. J Pharm Innov. 2008;3(3):175–187. doi:10.1007/S12247-008-9043-1/METRICS.
  • De Araújo Pereira RR, Bruschi ML. Vaginal mucoadhesive drug delivery systems. 2012;38:643–652. doi:10.3109/03639045.2011.623355.
  • Boddu SHS, Bonam SP, Jung R. Development and characterization of a ricinoleic acid poloxamer gel system for transdermal eyelid delivery. 2015;41:605–612. doi:10.3109/03639045.2014.886696.
  • Santis AK, De Freitas ZMF, Ricci E, et al. Nifedipine in semi-solid formulations for topical use in peripheral vascular disease: preparation, characterization, and permeation assay. 2013;39:1098–1106. doi:10.3109/03639045.2012.711833.
  • Ruiz A, Arias JL, Gallardo V. Skin creams made with olive oil. Oil Heal. Dis. Prev. 2010;1:1133–1141. doi:10.1016/B978-0-12-374420-3.00124-8.
  • Formica ML, Real DA, Picchio ML, et al. On a highway to the brain: a review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today. 2022;29:101631. doi:10.1016/j.apmt.2022.101631.
  • Vinaud MC, Real D, Fraga CM, et al. Nanodelivery of nitazoxanide: impact on the metabolism of Taenia crassiceps cysticerci intracranially inoculated in mice. 2020;11:329–339. doi:10.4155/tde-2020-0017.
  • Real DA, Hoffmann S, Leonardi D, et al. A quality by design approach for optimization of lecithin/Span® 80 based nanoemulsions loaded with hydrophobic drugs. J. Mol. Liq. 2021;321:114743. doi:10.1016/j.molliq.2020.114743.
  • Boylan JC. The development of semi-solid dosage forms: an overview. 2008;2:325–357. doi:10.3109/03639047609051903.
  • Aulton M, Taylor K. Aulton’s pharmaceutics: the design and manufacture of medicines (6th ed). London, UK: Elsevier; 2022, p. 248–253.
  • Adejare A. Preceded by: Remington, J.P. (The science and practice of pharmacy). 1000; 2020.
  • Nedanova V, Bogoevska R, Stojanovska NA. Key aspects in process design & scale up of semi-solid dosage forms from pilot to commercial batch size. Maced Pharm Bull. 2022;68(03):269–270. doi:10.33320/maced.pharm.bull.2022.68.03.129.
  • Lyapunov NA, Bezuglaya EP, Lyapunov AN, et al. Laboratory equipment during pharmaceutical development of semi-solid preparations. Razrabotka i registraciâ lekarstvennyh sredstv. 2019;8(1):29–36. doi:10.33380/2305-2066-2019-8-1-29-36.
  • Grangeia HB, Silva C, Simões SP, et al. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm. 2020;147:19–37. doi:10.1016/j.ejpb.2019.12.007.
  • Costa PF, Albers HJ, Linssen JEA, et al. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip. 2017;17(16):2785–2792. doi:10.1039/C7LC00202E.
  • Real DA, Gagliano A, Sonsini N, et al. Design and optimization of pH-sensitive Eudragit nanoparticles for improved oral delivery of triclabendazole. Int J Pharm. 2022;617:121594. doi:10.1016/J.IJPHARM.2022.121594.
  • Ali AM, Abo Dena AS, Yacoub MH, et al. Exploring the influence of particle shape and air velocity on the flowability in the respiratory tract: a computational fluid dynamics approach. 2019;45:1149–1156. doi:10.1080/03639045.2019.1600534.
  • Aničić N, Smrdel P, Kitak D, et al. Applicability of image analysis to support QbD driven development of pellets. 2022;47:1794–1808. doi:10.1080/03639045.2022.2063880.
  • Real JP, Real DA, Lopez-Vidal L, et al. 3D-printed gastroretentive tablets loaded with niclosamide nanocrystals by the melting solidification printing process (MESO-PP). Pharm. 2023;15(5):1387. doi:10.3390/PHARMACEUTICS15051387.
  • Lopez-Vidal L, Real JP, Real DA, et al. Nanocrystal-based 3D-printed tablets: semi-solid extrusion using melting solidification printing process (MESO-PP) for oral administration of poorly soluble drugs. Int J Pharm. 2022;611:121311. doi:10.1016/J.IJPHARM.2021.121311.
  • Lopez-Vidal L, Real DA, Paredes AJ, et al. 3D-printed nanocrystals for oral administration of the drugs. Drug Deliv. Nanomater. 2022;1:109–133. doi:10.1201/9781003168584-5/3D-PRINTED-NANOCRYSTALS-ORAL-ADMINISTRATION-DRUGS-LUC.
  • Cai R, Hou Z, Zhao Y. Numerical study on particle mixing in a double-screw conical mixer. Powder Technol. 2019;352:193–208. doi:10.1016/j.powtec.2019.04.065.
  • Bapat AA, Goilkar SS. Conical vessel screw agitator fabrication after design and structural analysis for dry mixing of chemical ingredients for pharmaceutical tablets. Mater. Today Proc. 2023;82:322–329. doi:10.1016/j.matpr.2023.02.145.
  • Li Z, Peng WH, Liu WJ, et al. Advances in numerical simulation of unit operations for tablet preparation. Int J Pharm. 2023;634:122638. doi:10.1016/J.IJPHARM.2023.122638.
  • Reyes R, Abou-Dahech MS, Nguyen N, et al. Skin penetration of caffeine from commercial eye creams and eye creams designed and optimized based on hansen solubility parameters. Int J Pharm. 2023;639:122973. doi:10.1016/J.IJPHARM.2023.122973.
  • Naseef H, Sahoury Y, Farraj M, et al. Novel fusidic acid cream containing metal ions and natural products against multidrug-resistant bacteria. Pharm. 2022;14(8):1638. doi:10.3390/PHARMACEUTICS14081638.
  • Liu Y, Liu C, Jia W, et al. The molecular mechanism of propylene glycol monocaprylate on skin retention: probing the dual roles on the molecular mobility and collagen connection in roflumilast cream. AAPS PharmSciTech. 2022;23(5):136. doi:10.1208/S12249-022-02284-Y/FIGURES/11.
  • Xiao Y, Jiang C. Industrial designers’ thinking in the stage of concept generation for social design: themes, strategies and modes. Int J Technol Des Educ. 2023;33(1):281–311. doi:10.1007/S10798-022-09732-7.
  • Varpio L, Paradis E, Uijtdehaage S, et al. The distinctions between theory, theoretical framework, and conceptual framework. Acad Med. 2020;95(7):989–994. doi:10.1097/ACM.0000000000003075.
  • Macfarlane A, O'Reilly-de Brún M. Using a theory-driven conceptual framework in qualitative health research. Qual Health Res. 2012;22(5):607–618. doi:10.1177/1049732311431898.
  • Ng BH, Kwan CC, Ding YL, et al. Solids motion in a conical frustum-shaped high shear mixer granulator. Chem. Eng. Sci. 2007;62(3):756–765. doi:10.1016/j.ces.2006.10.003.
  • Ng BH, Kwan CC, Ding YL, et al. Solids motion of calcium carbonate particles in a high shear mixer granulator: a comparison between dry and wet conditions. Powder Technol. 2007;177(1):1–11. doi:10.1016/j.powtec.2007.02.014.
  • Kumar A, Sharma R, Kumar S, et al. A review on machining performance of AISI 304 steel. Mater. Today Proc. 2022;56:2945–2951. doi:10.1016/j.matpr.2021.11.003.
  • Nkhoma RKC, Siyasiya CW, Stumpf WE. Hot workability of AISI 321 and AISI 304 austenitic stainless steels. J. Alloys Compd. 2014;595:103–112. doi:10.1016/j.jallcom.2014.01.157.
  • Sukumaran S, Francis Xavier L, Deepanraj B, et al. Corrosion studies on low-cost solid lubricant coated stainless steel specimen. Mater. Today Proc. 2023;1:1–6. doi:10.1016/j.matpr.2023.03.397.
  • Badruddoza AZM, Yeoh T, Shah JC, et al. Assessing and predicting physical stability of emulsion-based topical semisolid products: a review. J Pharm Sci. 2023;112(7):1772–1793. doi:10.1016/J.XPHS.2023.03.014.
  • Saldarriaga JF. Application of an artificial neural networks for predicting the heat transfer in conical spouted bed using the Nusselt module. Heliyon. 2022;8(11):e11611. doi:10.1016/J.HELIYON.2022.E11611.
  • Zhao T, Ai W, Ma H, et al. Integral identification of fluid specific heat capacity and heat transfer coefficient distribution in heat exchangers based on multiple-case joint analysis. Int. J. Heat Mass Transf. 2022;185:122394. doi:10.1016/j.ijheatmasstransfer.2021.122394.
  • Chaksmithanont P, McEntee G, Hartmanshenn C, et al. The effect of intermittent mixing on particle heat transfer in an agitated dryer. Powder Technol. 2023;422:118459. doi:10.1016/j.powtec.2023.118459.
  • Aida M, Murakami Y, Shono A. Estimation of heat transfer coefficient in turbulent regime during agitation by two-blade wide paddle impellers. Chem. Eng. Res. Des. 2023;189:46–51. doi:10.1016/j.cherd.2022.10.048.
  • Ligrani PM, Oliveira MM, Blaskovich T. Comparison of heat transfer augmentation techniques. 2012;41:337–362. doi:10.2514/2.1964.
  • Kukulka DJ, Smith R, Fuller KG. Development and evaluation of enhanced heat transfer tubes. Appl. Therm. Eng. 2011;31(13):2141–2145. doi:10.1016/j.applthermaleng.2011.01.024.
  • Mehrali M, Sadeghinezhad E, Rosen MA, et al. Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids. Exp. Therm. Fluid Sci. 2015;68:100–108. doi:10.1016/j.expthermflusci.2015.03.012.
  • Wang Y, Houshmand F, Elcock D, et al. Convective heat transfer and mixing enhancement in a microchannel with a pillar. Int. J. Heat Mass Transf. 2013;62:553–561. doi:10.1016/j.ijheatmasstransfer.2013.03.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.