129
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of a novel direct compressible co-processed excipient and its application for formulation of Mirtazapine orally disintegrating tablets

, , , , , , , , & ORCID Icon show all
Pages 36-44 | Received 06 Jul 2023, Accepted 23 Nov 2023, Published online: 27 Dec 2023

References

  • Alǧin Yapar E. Orally disintegrating tablets: an overview. J Appl Pharm Sci. 2014;4(2):118–125.
  • Nagar P, Singh K, Chauhan I, et al. Orally disintegrating tablets: formulation, preparation techniques and evaluation. J Appl Pharm Sci. 2011;1(4):35–45.
  • Joshi R, Garud N, Akram W. Fast dissolving tablets: a review. Int J Pharm Sci Res. 2020;11(4):1562–1570.
  • Gupta DK, Maurya A, Varshney MM. Orodispersible tablets: an overview of formulation and technology. World J Pharm Pharm Sci. 2020;9(10):1406–1418.
  • Mužíková J, Novotná A, Bartoš M. A study of the combination of microcrystalline cellulose and mannitol in a co-processed dry binder and in a physical mixture for the use in orally disintegrating tablets. Acta Pol Pharm. 2019;76(2):355–365. doi: 10.32383/appdr/102487.
  • Thulluru A, Madhavi C, Nandini K, et al. Co-processed excipients: new era in pharmaceuticals. Asia J Resear Pharm Sci. 2019;9(1):1. doi: 10.5958/2231-5659.2019.00001.8.
  • Liew KB, Gaurav A, Mandal UK. A review on co-processed excipients: current and future trend of excipient technology. Int J Pharm Pharm Sci. 2019;11(1):1.
  • Pawar SB, Ahirrao SP, Kshirsagar SJ, et al. Review on novel pharmaceutical coprocessed excipients. Pharm Reason. 2019;2(1):14–20.
  • Al-Zoubi N, Gharaibeh S, Aljaberi A, et al. Spray drying for direct compression of pharmaceuticals. Processes. 2021;9(2):267. doi: 10.3390/pr9020267.
  • Jacob B, Bisht LK, Chandy V. Ludiflash - A novel excipient for patient friendly dosage form. Stm J. 2018;7(2):5–7.
  • Mathivanan N, Chandrasekhara Rao G. Effect of microcrystalline cellulose on the improvement of mechanical strength of orally disintegrating tablets using coprocessed excipient systems. J Glob Trends Pharm Sci. 2015;6(2):2611–2620.
  • Patil MG, Kakade SM, Pathade SG. Formulation and evaluation of orally disintegrating tablet containing tramadol hydrochloride by mass extrusion technique. J Appl Pharm Sci. 2011;1(6):178–181.
  • Ahmed S, Islam MS, Ullah B, et al. A review article on pharmaceutical analysis of pharmaceutical industry according to pharmacopoeias. Orient J Chem. 2020;36(1):01–10. doi: 10.13005/ojc/360101.
  • Sihvonen T, Reinikainen SP. Image based evaluation of textured 3DSEM models. Ultramicroscopy. 2022;238:113518. doi: 10.1016/j.ultramic.2022.113518.
  • Prabhat S, Rajan S, Sahana S. Formulation and evaluation of orally disintegrating tablet containing taste masked mirtazapine. JAPLR. 2021;10(2):71–80. doi: 10.15406/japlr.2021.10.00368.
  • USP. Mirtazapine. usp-nf. Rockville (MD): USP; 2012.
  • Naureen F, Shah Y, Shah SI, et al. Formulation development of mirtazapine liquisolid compacts: optimization using Central composite design. Molecules. 2022;27(13):4005. doi: 10.3390/molecules27134005.
  • Widodo RT, Hassan A, Liew KB, et al. A directly compressible pregelatinised sago starch: a new excipient in the pharmaceutical tablet formulations. Polymers (Basel). 2022;14(15):3050. doi: 10.3390/polym14153050.
  • Vardhan H, Sasamal S, Mohanty K. Xylitol production by Candida tropicalis from areca nut husk enzymatic hydrolysate and crystallization. Appl Biochem Biotechnol. 2023; In press. doi: 10.1007/s12010-023-04469-y.
  • Yadav PS, Kumar V, Singh UP, et al. Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol. Saudi Pharm J. 2013;21(1):77–84. doi: 10.1016/j.jsps.2011.12.007.
  • Liew KB, Janakiraman AK, Abd Razak FS, et al. Supercritical fluid technology and its pharmaceutical applications: a revisit with two decades of progress. IJPER. 2020;54(2s):S1–s11. doi: 10.5530/ijper.54.2s.56.
  • Jaipal A, Pandey MM, Charde SY, et al. Effect of HPMC and mannitol on drug release and bioadhesion behavior of buccal discs of buspirone hydrochloride: in-vitro and in-vivo pharmacokinetic studies. Saudi Pharm J. 2015;23(3):315–326. doi: 10.1016/j.jsps.2014.11.012.
  • Atykyan N, Revin V, Shutova V. Raman and FT-IR spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the different regimes of cultivation on a molasses media. AMB Expr. 2020;10(1):84. doi: 10.1186/s13568-020-01020-8.
  • Md Salim R, Asik J, Sarjadi MS. Chemical functional groups of extractives, cellulose and lignin extracted from native leucaena leucocephala bark. Wood Sci Technol. 2021;55(2):295–313. doi: 10.1007/s00226-020-01258-2.
  • Swamy D, Arvapalli S, Sharma JVC. Fabrication, optimization and in vitro evaluation of oral disintegrating tablets of mirtazapine. Int J Pharm Sci Rev Res. 2019;25:163–169.
  • Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. Pharmaceutical Press; 2009.
  • Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants. 2014;2(1):21–43. doi: 10.3390/lubricants2010021.
  • Ohrem HL, Schornick E, Kalivoda A, et al. Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms? Pharm Dev Technol. 2014;19(3):257–262. doi: 10.3109/10837450.2013.775154.
  • Kanher PR. Lubricants in pharmaceutical solid dosage forms with special emphasis on magnesium stearate. WJPR. 2017;6(9):131–146. doi: 10.20959/wjpr20179-9170.
  • Desai PM, Liew CV, Heng PWS. Review of disintegrants and the disintegration phenomena. J Pharm Sci. 2016;105(9):2545–2555. doi: 10.1016/j.xphs.2015.12.019.
  • Katewongsa P, Phaechamud T. Influence of disintegrant on properties of fast disintegrating tablet containing xylitol. AMR. 2012;581-582(1):1141–1144. doi: 10.4028/www.scientific.net/AMR.581-582.1141.
  • Soh JLP, Grachet M, Whitlock M, et al. Characterization, optimisation and process robustness of a co-processed mannitol for the development of orally disintegrating tablets. Pharm Dev Technol. 2013;18(1):172–185. doi: 10.3109/10837450.2012.685658.
  • Al-Khattawi A, Mohammed AR. Compressed orally disintegrating tablets: excipients evolution and formulation strategies. Expert Opin Drug Deliv. 2013;10(5):651–663. doi: 10.1517/17425247.2013.769955.
  • Sharma SN, Sonawane RS. Role of superdisintegrants in immediate release tablets: a review. J Pharm Biosci. 2017;5(1):1. doi: 10.31555/jpbs/2017/5/1/1-5.
  • Kumar RS, Annu K. Superdisintegrant: crucial elements for mouth dissolving tablets. J Drug Deliv Ther. 2019;9(2):461–468.
  • Agiba AM, Eldin AB. Insights into formulation technologies and novel strategies for the design of orally disintegrating dosage forms: a comprehensive industrial review. Int J Pharm Pharm Sci. 2019;11(9):8–20.
  • Yassin S, Goodwin DJ, Anderson A, et al. The disintegration process in microcrystalline cellulose based tablets, part 1: influence of temperature, porosity and superdisintegrants. J Pharm Sci. 2015;104(10):3440–3450. doi: 10.1002/jps.24544.
  • Siemiradzka W, Dolińska B, Ryszka F. The effect of excipients on captopril release from preparations disintegrating in the oral cavity (ODT). IOSR J Pharm Biol Sci. 2019;14(1):8–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.