94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico exploration of venlafaxine, a potential non-tricyclic antidepressant in a liposomal formulation for nose-to-brain drug delivery

ORCID Icon &
Pages 55-67 | Received 30 Jul 2023, Accepted 15 Dec 2023, Published online: 25 Dec 2023

References

  • Bauer M, Bschor T, Pfennig A, et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of unipolar depressive disorders in primary care. World J Biol Psychiatry. 2007;8(2):67–104. doi: 10.1080/15622970701227829.
  • Bains N, Abdijadid S. Major depressive disorder. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2022; PMID: 32644504.
  • Sussman N. SNRIs versus SSRIs: mechanisms of action in treating depression and painful physical symptoms. Prim Care Companion J Clin Psychiatry. 2003;5:19–26.
  • Emslie GJ, Walkup JT, Pliszka SR, et al. Nontricyclic antidepressants: current trends in children and adolescents. J Am Acad Child Adolesc Psychiatry. 1999;38(5):517–528. doi: 10.1097/00004583-199905000-00013.
  • Ahmed GK, Elserogy YM, Elfadl GMA, et al. Antidepressant and anti-suicidal effects of ketamine in treatment-resistant depression associated with psychiatric and personality comorbidities: a double-blind randomized trial. J Affect Disord. 2023;325:127–134. doi: 10.1016/j.jad.2023.01.005.
  • Moyo I, Mwanza D, Mashazi P. Novel covalent immobilization of cobalt (II) octa acyl chloride phthalocyanines onto phenylethylamine pre-grafted gold via spontaneous amidation. Electrochim Acta. 2022;422:140550. doi: 10.1016/j.electacta.2022.140550.
  • Sánchez-Soto M, Casadó-Anguera V, Yano H, et al. α 2A-and α 2C-adrenoceptors as potential targets for dopamine and dopamine receptor ligands. Mol Neurobiol. 2018;55(11):8438–8454. doi: 10.1007/s12035-018-1004-1.
  • Dai MH, Li DQ, Han Y. Effect of venlafaxine on cognitive function and hippocampal brain-derived neurotrophic factor expression in rats with post-stroke depression. J Zhejiang Univ (Med Sci). 2011;40:527–534.
  • Shrivastava A. Analytical methods for venlaflaxine hydrochloride and metabolites determinations in different matrices. Sys Rev Pharm. 2012;3:42–50. doi: 10.4103/0975-8453.107141.
  • Vitorino C, Silva S, Bicker J, et al. Antidepressants and nose-to-brain delivery: drivers, restraints, opportunities and challenges. Drug Discov Today. 2019;24(9):1911–1923. doi: 10.1016/j.drudis.2019.06.001.
  • Fasipe OJ. Moving from the old monoaminergic theory toward the emerging hypothesis in the rational design of rapid-onset novel antidepressants. Med J DY Patil Vidyapeeth. 2019;12(4):292–315. doi: 10.4103/mjdrdypu.mjdrdypu_110_18.
  • Ormseth MJ, Scholz BA, Boomershine CS. Duloxetine in the management of diabetic peripheral neuropathic pain. Patient Prefer Adherence. 2011;5:343–356. doi: 10.2147/ppa.s16358.
  • Pereira P, Gianesini J, Silva BC, et al. Neurobehavioral and genotoxic parameters of duloxetine in mice using the inhibitory avoidance task and comet assay as experimental models. Pharmacol Res. 2009;59(1):57–61. doi: 10.1016/j.phrs.2008.09.014.
  • Kasper S, Pail G. Milnacipran: a unique antidepressant? Neuropsychiatr Dis Treat. 2010;6(Suppl I):23–31. doi: 10.2147/NDT.S11777.
  • Serretti A, Chiesa A, Calati R, et al. Novel antidepressants and panic disorder: evidence beyond current guidelines. Neuropsychobiology. 2011;63(1):1–7. doi: 10.1159/000321831.
  • Blier P. Dual serotonin and noradrenaline reuptake inhibitors: focus on their differences. Int J Psychiatry Clin Pract. 2006;10(Suppl 2):22–32. doi: 10.1080/13651500600645612.
  • Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10(7):957–972. doi: 10.1517/17425247.2013.790887.
  • Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002;7(23):1184–1189. doi: 10.1016/s1359-6446(02)02529-1.
  • Alam MI, Beg S, Samad A, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci. 2010;40(5):385–403. doi: 10.1016/j.ejps.2010.05.003.
  • Zhi K, Raji B, Nookala AR, et al. PLGA nanoparticle-based formulations to cross the blood–brain barrier for drug delivery: from R&D to cGMP. Pharmaceutics. 2021;13(4):500. doi: 10.3390/pharmaceutics13040500.
  • Rabiee N, Ahmadi S, Afshari R, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther. 2021;4:2000076. doi: 10.1002/adtp.202000076.
  • Mittal D, Ali A, Md S, et al. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014;21(2):75–86. doi: 10.3109/10717544.2013.838713.
  • Moghimipour E, Handali S. Liposomes as drug delivery systems: properties and applications. Res J Pharm Biol Chem Sci. 2013;4:169–185.
  • Islam SU, Shehzad A, Ahmed MB, et al. Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020;25(8):1929. doi: 10.3390/molecules25081929.
  • Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res. 2020;30(4):336–365. doi: 10.1080/08982104.2019.1668010.
  • Betzer O, Shilo M, Opochinsky R, et al. The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomedicine (Lond). 2017;12(13):1533–1546. doi: 10.2217/nnm-2017-0022.
  • Al Badri YN, Chaw CS, Elkordy AA. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics. Pharmaceutics. 2023;15(1):294. doi: 10.3390/pharmaceutics15010294.
  • Kumar R, Dkhar DS, Kumari R, et al. Lipid based nanocarriers: production techniques, concepts, and commercialization aspect. J Drug Deliv Sci Technol. 103526. 2022;74. doi: 10.1016/j.jddst.2022.103526.
  • Verdonk ML, Cole JC, Hartshorn MJ, et al. Improved protein–ligand docking using GOLD. Proteins Struct Funct Bioinf. 2003;52(4):609–623. doi: 10.1002/prot.10465.
  • Leach AR, Shoichet BK, Peishoff CE. Prediction of protein − ligand interactions. Docking and scoring: successes and gaps. J Med Chem. 2006;49(20):5851–5855. doi: 10.1021/jm060999m.
  • Arora S, Lohiya G, Moharir K, et al. Identification of potential flavonoid inhibitors of the SARS-CoV-2 main protease 6YNQ: a molecular docking study. Digit Chin Med. 2020;3(4):239–248. doi: 10.1016/j.dcmed.2020.12.003.
  • Al-Ghani R, Nirwani WP, Novianti TN, et al. In silico anti-inflammatory activity evaluation from Usnea misaminensis through molecular docking approach. Chem Mater. 2022;1(3):77–82. doi: 10.56425/cma.v1i3.40.
  • Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127–134. doi: 10.1093/protein/8.2.127.
  • Kareti SR, Subash P. In silico molecular docking analysis of potential anti-Alzheimer’s compounds present in chloroform extract of Carissa carandas leaf using gas chromatography MS/MS. Curr Ther Res Clin Exp. 2020;93:100615. doi: 10.1016/j.curtheres.2020.100615.
  • Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717. doi: 10.1038/srep42717.
  • Law SL, Hung HY. Properties of acyclovir-containing liposomes for potential ocular delivery. Int J Pharm. 1998;161(2):253–259. doi: 10.1016/S0378-5173(97)00362-1.
  • Ledeti I, Bolintineanu S, Vlase G, et al. Compatibility study between antiparkinsonian drug Levodopa and excipients by FTIR spectroscopy, X-ray diffraction and thermal analysis. J Therm Anal Calorim. 2017;130(1):433–441. doi: 10.1007/s10973-017-6393-2.
  • Khute S, Jangde RK. Optimization of nasal liposome formulation of venlafaxine hydrochloride using a Box-Behnken experimental design. Curr Ther Res Clin Exp. 2023;99:100714. doi: 10.1016/j.curtheres.2023.100714.
  • Li L, Zou Y, Liu B, et al. Contribution of the P2X4 receptor in rat hippocampus to the comorbidity of chronic pain and depression. ACS Chem Neurosci. 2020;11(24):4387–4397. doi: 10.1021/acschemneuro.0c00623.
  • Kang JH, Ko YT. Intraosseous administration into the skull: potential blood–brain barrier bypassing route for brain drug delivery. Bioeng Transl Med. 2022;8(2):e10424. doi: 10.1002/btm2.10424.
  • Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol. 2021;61:102098. doi: 10.1016/j.jddst.2020.102098.
  • Beaulieu JM, Espinoza S, Gainetdinov RR. Dopamine receptors–IUPHAR Review 13. Br J Pharmacol. 2015;172(1):1–23. doi: 10.1111/bph.12906.
  • Leggio GM, Bucolo C, Platania CBM, et al. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther. 2016;165:164–177. doi: 10.1016/j.pharmthera.2016.06.007.
  • Jakobs D, Hage-Hülsmann A, Prenner L, et al. Downregulation of β1-adrenergic receptors in rat C6 glioblastoma cells by hyperforin and hyperoside from St John’s wort. J Pharm Pharmacol. 2013;65(6):907–915. doi: 10.1111/jphp.12050.
  • Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87(1-3):187–198. doi: 10.1016/s0168-3659(02)00363-2.
  • Di Stefano A, Carafa M, Sozio P, et al. Evaluation of rat striatal L-dopa and DA concentration after intraperitoneal administration of L-dopa prodrugs in liposomal formulations. J Control Release. 2004;99(2):293–300. doi: 10.1016/j.jconrel.2004.07.010.
  • Di Stefano A, Sozio P, Iannitelli A, et al. Maleic-and fumaric-diamides of (O, O-diacetyl)-L-Dopa-methylester as anti-Parkinson prodrugs in liposomal formulation. J Drug Target. 2006;14(9):652–661. doi: 10.1080/10611860600916636.
  • Hegde K, Joshi AB. Hepatoprotective effect of Carissa carandas Linn root extract against CCl 4 and paracetamol induced hepatic oxidative stress; 2009. doi: 10.3329/bjp.v5i1.5681.
  • Jazuli I, Nabi B, Alam T, et al. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using Box-Behnken design for brain targeting: in vitro and in vivo studies. J Pharm Sci. 2019;108(9):3082–3090. doi: 10.1016/j.xphs.2019.05.001.
  • Dange SM, Kamble MS, Bhalerao KK, et al. Formulation and evaluation of venlafaxine nanostructured lipid carriers. J Bionanosci. 2014;8(2):81–89. doi: 10.1166/jbns.2014.1209.
  • Yu S, Li D, Shi A, et al. Multidrug-loaded liposomes prevent ischemic stroke through intranasal administration. Biomed Pharmacother. 2023;162:114542. doi: 10.1016/j.biopha.2023.114542.
  • Casula E, Manca ML, Perra M, et al. Nasal spray formulations based on combined hyalurosomes and glycerosomes loading zingiber officinalis extract as green and natural strategy for the treatment of rhinitis and rhinosinusitis. Antioxidants. 2021;10(7):1109. doi: 10.3390/antiox10071109.
  • Al Asmari AK, Ullah Z, Tariq M, et al. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther. 2016;10:205–215. doi: 10.2147/DDDT.S93937.
  • Narayan R, Singh M, Ranjan O, et al. Development of risperidone liposomes for brain targeting through intranasal route. Life Sci. 2016;163:38–45. doi: 10.1016/j.lfs.2016.08.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.