544
Views
75
CrossRef citations to date
0
Altmetric
Articles

Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils

, , , , , , , , & show all
Pages 609-624 | Received 22 Apr 2013, Accepted 14 Jul 2013, Published online: 05 Sep 2013

References

  • Alloway BJ. 1995. Heavy metals in soils. 2nd ed. London: Springer.
  • Alvarez JM, Lopez-Valdivia LM, Novillo J, Obrador A, Rico MI. 2006. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma. 132:450–463.
  • Angelova VR, Ivanova ZS, Braikova DM. 1999. Heavy metals (Pb, Cu, Zn and Cd) in the system soil grapevine grape. J Sci Food Agr. 79:713–721.
  • Arias M, López E, Fernández D, Soto B. 2004. Copper distribution and dynamics in acid vineyard soils treated with copper-based fungicides. Soil Sci. 169:796–805.
  • Banas D, Marin D, Skraber S, Chopin EIB, Zanella A. 2010. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France). Environ Pollut. 158:476–482.
  • Bortoluzzi EC, Mortele DF, Rheinheimer DS, Casali CA, Melo GW, Brunetto G. 2012. Mineralogical changes caused by grape production in a regosol from subtropical Brazilian climate. J Soil Sediment. 12:854–862.
  • Bradl HB. 2004. Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interf Sci. 277:1–18.
  • Brindley GW, Brown G. 1980. Crystal structures of clays minerals and their X-ray identification [Monograph]. London: Mineralogical Society.
  • Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC. 1998. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut. 102:151–161.
  • Brunetto G, Ventura M, Scandellari F, Ceretta CA, Kaminski J, Melo GWB, Taglavini M. 2011. Nutrients release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutr Cycl Agroecosys. 90:299–308.
  • Canellas LP, Santos GA. 2005. Humosfera: tratado preliminar sobre a química das substâncias húmicas. Rio de Janeiro: Campos dos Goytacazes, Universidade Estadual do Norte Fluminense; p. 309.
  • Casali CA, Moterle DF, Rheinheimer DS, Brunetto G, Corcini ALM, Kaminski J, Melo GWB. 2008. Formas e dessorção de cobre em solos cultivados com videira na Serra Gaúcha do Rio Grande do Sul. Revista Brasileira de Ciência do Solo. 32:1479–1487.
  • Chaignon V, Hinsinger P. 2003. A biotest for evaluating copper bioavailability to plants in a contaminated soil. J Environ Qual. 32:824–833.
  • Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P. 2003. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut. 123:229–238.
  • Chern EC, Tsai DW, Ogunseitan OA. 2007. Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environ Sci Technol. 41:3566–3572.
  • Citeau L, Lamy I, Van Oort F, Elsass F. 2003. Colloidal facilitated transfer of metals in soils under different land use. Colloid Surface A Physicochem Eng Aspects. 217:11–19.
  • Comissão de Química e Fertilidade do Solo-RS/SC. 2004. Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina. 10th ed. Porto Alegre: Núcleo Regional Sul – Sociedade Brasileira de Ciência do Solo.
  • Cornejo P, Meiera S, Borie G, Rillig MC, Borie F. 2008. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ. 406:154–160.
  • Croué JP, Benedetti MF, Violleau D, Leenheer JA. 2003. Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site. Environ Sci Technol. 37:328–336.
  • Empresa Brasileira de Pesquisa Agropecuária. 1997. Manual de métodos de análise de solo. Rio de Janeiro: CNPS.
  • Evangelou MWH, Ebel M, Shaeffer A. 2006. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere. 63:996–1004.
  • Fernández-Calviño D, Nóvoa-Muñoz JC, Díaz-Raviña M, Arias-Estévez M. 2009. Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian Peninsula). Geoderma. 153:119–129.
  • Fernández-Calviño D, Pateiro-Moure M, Nóvoa-Muñoz JC, Garrido-Rodrigues B, Arias-Estévez M. 2012. Zinc distribution and acid–base mobilisation in vineyard soils and sediments. Sci Total Environ. 414:470–479.
  • Fernández-Calviño D, Soler-Rovira P, Polo A, Arias-Estévez M, Plaza C. 2010. Influence of humified organic matter on copper behavior in acid polluted soils. Environ Pollut. 158:3634–3641.
  • Gadkar V, Rillig MC. 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. Fems Microbiol Lett. 263:93–101.
  • Giller KE, Witer E, McGrath SP. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem. 30:1389–1314.
  • Girotto E. 2010. Alterações fisiológicas e bioquímicas em plantas cultivadas em solos com acúmulo de cobre e zinco [dissertation]. Santa Maria: Federal University of Santa Maria.
  • González-Chávez MC, Carrillo-González R, Wrigth SF, Nichols KA. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut. 130:317–323.
  • IPAGRO. 1989. Atlas Agroclimatológico do Estado do Rio Grande do Sul. Instituto de Pesquisas Agronômicas – Seção de Enologia Agrícola. Porto Alegre: Palloti.
  • Komarek M, Čadková E, Chrastný V, Bordas F, Bollinger J. 2010. Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int. 36:138–151.
  • Mackie KA, Müller T, Kandeler E. 2012. Remediation of copper in vineyards – a mini review. Environ Pollut. 167:16–26.
  • McBride M, Martínez CE, Sauvé S. 1998. Copper (II) activity in aged suspensions of goethite and organic matter. Soil Sci Soc Am J. 62:1542–1548.
  • McBride MB. 1994. Environmental chemistry of soils. New York, NY: Oxford University Press.
  • Mehra OP, Jackson ML. 1960. Iron oxide removal from soils by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner. 7:317–327.
  • Nagajyoti PC, Lee KD, Sreekanth TVM. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 8:199–216.
  • Nascimento CWA, de Melo EEC, do Nascimento RSD, Leite PVV. 2007. Effect of liming on the plant availability and distribution of zinc and copper among soil fractions. Commun Soil Sci Plan. 38:545–560.
  • Nascimento CWA, Fontes RLF, Neves JCL, Melício ACFD. 2002. Fracionamento, dessorção extração químico de zinco em latossolos. Revista Brasileira de Ciência do Solo. 26:599–606.
  • Nogueirol RCN, Alleoni LRF, Nachtigall GR, Melo GWB. 2010. Sequential extration and availability of copper in Cu fungicide-amended vineyard soils from southern Brazil. J Hazard Mater. 181:931–937.
  • Nóvoa-Muñoz JC, Queijeiro JMG, Blanco-Ward D, Álvarez-Olleros C, Martínez-Cortizas A, García-Rodeja E. 2007. Total copper content and its distribution in acid vineyards soils developed from granitic rocks. Sci Total Environ. 378:23–27.
  • Parat C, Chaussod R, Lévêque J, Dousset S, Andreux F. 2002. The relationship between copper a accumulated in vineyard calcareous soils and soil organic matter and iron. Eur J Soil Sci. 53:663–669.
  • Pietrzak U, McPhail DC. 2004. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma. 122:151–166.
  • Ramos M. 2006. Metals in vineyard soils of the penedès area (NE Spain) after compost application. J Environ Manage. 78:209–215.
  • Romeu–Moreno A, Mas A. 1999. Effect of copper exposure in tissue cultured Vitis vinifera. J Agric Chem. 47:2519–2522.
  • Rusjan D, Strlic M, Pucko D, Korosec-Koruza Z. 2007. Copper accumulation regarding the soil characteristics in Sub-Mediterranean vineyards in Slovenia. Geoderma. 141:111–118.
  • SAS Institute Inc®. 2003. SAS Ver. 9.1.3. Cary, NC: SAS Institute Inc. Lic. UDESC.
  • Schramel O, Michalke B, Kettrup A. 2000. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Sci Total Environ. 263:11–22.
  • Sizmur T, Hodson ME. 2009. Do earthworms impact metal mobility and availability in soil? – a review. Environ Pollut. 157:1981–1989.
  • Soil Survey Staff. 2006. Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. 2nd ed. Washington, DC: US Government Printing Office.
  • Su J, Wang H, Kimberley MO, Beecroft K, Magesan GN, Hu C. 2008. Distribution of heavy metals in a sandy forest soil repeatedly amended with biosolids. Soil Res. 46:502–508.
  • Tedesco MJ, Gianello C, Bissani C, Bohnen H, Volkweiss SJ. 1995. Análise de solo, plantas e outros materiais. Porto Alegre: UFRGS/FA/DS.
  • Tessier A, Campbell PGC, Bisson M. 1979. Sequential extraction procedure for the speciation of the speciation of particulate trace metals. Anal Chem. 51:844–851.
  • Toselli M, Schiatti P, Ara D, Bertacchini A, Quartieri M. 2009. The accumulation of copper in soils of the Italian region Emilia-Romagna. Plant Soil Environ. 55:74–79.
  • [USEPA] United States Environmental Protection Agency. 1996. Method 3050B [Internet]. Acid digestion of sediments, sludges, and soils; [cited 2012 Oct 10]. Available from: http://.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3050b.pdf
  • Vodnik D, Grèmana H, Maèeka I, Van Elterenb JT, Kovaèevièc M. 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ. 392:130–136.
  • Wang S, Mulligan CN. 2012. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings. Environ Geochem Hlth. 34:1–8.
  • Weingerl V, Kerin D. 2000. Distribution of Zn in vineyard areas treated with zinc containing phytopharmaceuticals. Acta Chim Slov. 47:453–467.
  • Zhang M, Xia Y. 2005. Release behavior of copper and zinc from sandy soils. J Environ Sci. 17:566–571.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.