400
Views
13
CrossRef citations to date
0
Altmetric
Articles

Exogenous 24-epibrassinolide alleviates the detrimental effects of suboptimal root zone temperature in cucumber seedlings

ORCID Icon, , , , &
Pages 1927-1940 | Received 25 Nov 2018, Accepted 09 Feb 2019, Published online: 01 Mar 2019

References

  • Acharya BR, Assmann SM. 2009. Hormone interactions in stomatal function. Plant Mol Biol. 69:451–462. doi:10.1007/s11103-008-9427-0
  • Anwar A, Bai L, Miao L, Liu Y, Li S, Yu X, Li Y. 2018b. 24-Epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings. Int J Mol Sci. 19:2497. doi:10.3390/ijms19092497
  • Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y. 2018a. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res. 51:46. doi:10.1186/s40659-018-0195-2
  • Anwar A, Yan Y, Liu Y, Li Y, Yu X. 2018c. 5-Aminolevulinic acid improves nutrient uptake and endogenous hormone accumulation, enhancing low-temperature stress tolerance in cucumbers. Int J Mol Sci. 19:3379. doi:10.3390/ijms19113379
  • Bai L, Deng H, Zhang X, Yu X, Li Y. 2016. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures. PLoS One. 11:e0156188. doi:10.1371/journal.pone.0156188
  • Bai L, Liu Y, Mu Y, Anwar A, He C, Yan Y, Li Y, Yu X. 2018. Heterotrimeric G-protein γ subunit CsGG3.2 positively regulates the expression of CBF genes and chilling tolerance in cucumber. Front Plant Sci. 9:488. doi:10.3389/fpls.2018.00488
  • Bajguz A. 2009. Brassinosteroid enhanced the level of abscisic acid in chlorella vulgaris subjected to short-term heat stress. J Plant Physiol. 166:882–886. doi:10.1016/j.jplph.2008.10.004
  • Bajguz A, Piotrowska-Niczyporuk A. 2014. Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem. 80:176–183. doi:10.1016/j.plaphy.2014.04.009
  • Belkhadir Y, Wang X, Chory J. 2006. Brassinosteroid signaling pathway. Sci STKE. 364:cm4. doi:10.1126/stke.3642006cm4
  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA. 2001. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in arabidopsis. Plant J. 26:573–582.
  • Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2012. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 17:594–605. doi:10.1016/j.tplants.2012.05.012
  • Chung HY, Fujioka S, Choe S, Lee S, Lee YH, Baek NI, Chung IS. 2010. Simultaneous suppression of three genes related to brassinosteroid (BR) biosynthesis altered campesterol and BR contents, and led to a dwarf phenotype in arabidopsis thaliana. Plant Cell Rep. 29:397–402. doi:10.1007/s00299-010-0830-z
  • Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, et al. 2011. Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in arabidopsis. Plant J. 66:564–578. doi:10.1111/j.1365-313X.2011.04513.x
  • Deng XG, Zhu T, Peng XJ, Xi DH, Guo H, Yin Y, Zhang DW, Lin HH. 2016. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in nicotiana benthamiana. Sci Rep. 6:20579. doi:10.1038/srep20579
  • Dhaubhadel S, Browning KS, Gallie DR, Krishna P. 2002. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29:681–691.
  • Ding X, Jiang Y, He L, Zhou Q, Yu J, Hu D, Huang D. 2016. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci Rep. 6:35424. doi:10.1038/srep35424
  • Divi UK, Krishna P. 2009. Brassinosteroids confer stress tolerance. In: Hirt H, editor. Plant stress biology: genomics goes systems biology. Weinheim: Wiley-VCH; p. 119–135.
  • Dodd IC, He J, Turnbull CG, Lee SK, Critchley C, Dodd IC, Critchley C. 2000. The influence of supra-optimal root. J Exp Bot. 51:239–248.
  • Engels C, Marschner H. 1990. Effect of sub-optimal root zone temperatures at varied nutrient supply and shoot meristem temperature on growth and nutrient concentrations in maize seedlings (Zea mays L.). Plant Soil. 126:215–225. doi:10.1007/BF00012825
  • Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A. 2011. 28-homobrassinolide improves growth and photosynthesis in cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica. 49:55–64. doi:10.1007/s11099-011-0022-2
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48:909–930. doi:10.1016/j.plaphy.2010.08.016
  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S. 2002. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 130:1319–1334. doi:10.1104/pp.011254
  • Gonzalez-Fuentes JA, Shackel K, Lieth JH, Albornoz F, Benavides-Mendoza A, Evans RY. 2016. Diurnal root zone temperature variations affect strawberry water relations, growth, and fruit quality. Sci Hortic Amsterdam. 203:169–177. doi:10.1016/j.scienta.2016.03.039
  • Jiahui Z, Ning Z, Congcong L, Hao Y, Meiling L, Guirui Y, Kevin W, Qiang Y, Nianpeng H. 2018. C:N:P stoichiometry in China’s forests: from organs to ecosystems. Funct Ecol. 32:50–60. doi:10.1111/1365-2435.12979
  • Kawasaki Y, Matsuo S, Kanayama Y, Kanahama K. 2014. Effect of root-zone heating on root growth and activity, nutrient uptake, and fruit yield of tomato at low air temperatures. J Jpn Soc Hortic Sci. 83:295–301. doi:10.2503/jjshs1.MI-001
  • Li J, Yang P, Kang J, Gan Y, Yu J, Calderon-Urrea A, Lyu J, Zhang G, Feng Z, Xie J. 2016. Transcriptome analysis of pepper (Capsicum annuum) revealed a role of 24-epibrassinolide in response to chilling. Front Plant Sci. 7:1281.
  • Li P, Chen L, Zhou Y, Xia X, Shi K, Chen Z, Yu J. 2013. Brassinosteroids-induced systemic stress tolerance was associated with increased transcripts of several defence-related genes in the phloem in cucumis sativus. PLoS One. 8:e66582. doi:10.1371/journal.pone.0066582
  • Müssig C, Fischer S, Altmann T. 2002. Brassinosteroid-regulated gene expression. Plant Physiol. 129:1241–1251. doi:10.1104/pp.011003
  • Ren C, Han C, Peng W, Huang Y, Peng Z, Xiong X, Zhu Q, Gao B, Xie D. 2009. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in arabidopsis. Plant Physiol. 151:1412–1420. doi:10.1104/pp.109.146589
  • Saini S, Sharma I, Pati PK. 2015. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci. 6:950. doi:10.3389/fpls.2015.00950
  • Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S. 2018. 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of brassica juncea under salt stress. SAfr J Bot. 118:120–128. doi:10.1016/j.sajb.2018.07.009
  • Sirhindi G, Mir MA, Sharma P, Gill SS, Kaur H, Mushtaq R. 2015. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of glycine max L. under nickel stress. Physiol Mol Biol Plant. 21:559–565. doi:10.1007/s12298-015-0320-4
  • Skubacz A, Daszkowskagolec A, Szarejko I. 2016. The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci. 7. doi:10.3389/fpls.2016.01884
  • Steber CM, Mccourt P. 2001. A role for brassinosteroids in germination in arabidopsis. Plant Physiol. 125:763–769.
  • Sun S, An M, Han L, Yin S. 2015. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. Horti Sci. 50:1518–1523.
  • Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-Arree W, Pankean P, Homvisasevongsa S, Suksamrarn A. 2015. Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul. 34:320–331. doi:10.1007/s00344-014-9467-4
  • Wang Z, Zheng P, Meng J, Xi Z. 2015. Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. Acta Physiol Plant. 37:1–12. doi:10.1007/s11738-014-1746-y
  • Wei LJ, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ, Zhang DW, Lin HH. 2015. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci. 6:982. doi:10.3389/fpls.2015.00982
  • Wilkinson S, Corlett JE, Oger L, Davies WJ. 1998. Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. A vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol. 117:703–709.
  • Wu XX, Ding HD, Chen JL, Zhu ZW, Zha DS. 2015. Amelioration of oxidative damage in Solanum melongena seedlings by 24-epibrassinolide during chilling stress and recovery. Biol Plant. 59:350–356. doi:10.1007/s10535-015-0495-0
  • Xia X-J, Huang L-F, Zhou Y-H, Mao W-H, Sh K, Wu J-X, Asami T, Chen Z, Yu J-Q. 2009a. Brassinosteroids promote photosynthesis and growth by enhancing activation of rubisco and expression of photosynthetic genes in cucumis sativus L. Planta. 230:1185. doi:10.1007/s00425-009-1016-1
  • Xia XJ, Wang YJ, Zhou YH, Yuan T, Mao WH, Kai S, Asami T, Chen ZX, Yu JQ. 2009b. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 150:801–814. doi:10.1104/pp.109.138230
  • Yan Q-Y, Duan Z-Q, Mao J-D, Li X, Dong F. 2013. Low root zone temperature limits nutrient effects on cucumber seedling growth and induces adversity physiological response. J Integr Agri. 12:1450–1460. doi:10.1016/S2095-3119(13)60549-3
  • Yuan L, Shu S, Sun J, Guo S, Tezuka T. 2012. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in cucumis sativus L. under Ca(NO3)2 stress. Photosynth Res. 112:205–214. doi:10.1007/s11120-012-9774-1
  • Zhang S, Cai Z, Wang X. 2009. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. P Natl Acad Sci USA. 106:4543–4548. doi:10.1073/pnas.0900349106
  • Zheng Q, Liu J, Liu R, Wu H, Jiang C, Wang C, Guan Y. 2016. Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant Soil. 400:147–164. doi:10.1007/s11104-015-2712-1
  • Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P, Zhang D, Lin H. 2016. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci Rep. 6:35392. doi:10.1038/srep35392

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.