555
Views
27
CrossRef citations to date
0
Altmetric
Articles

Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability

&
Pages 1955-1968 | Received 14 Dec 2017, Accepted 14 Feb 2019, Published online: 04 Mar 2019

References

  • [APHA] American Public Health Association. 1998. Standard methods for the examination of water and wastewater. 20th. Washington (DC): American Public Health Association, American Water Works Association, and Water Environment Federation.
  • Ali S, Charles TC, Glick BR. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem. 80:160–167. doi:10.1016/j.plaphy.2014.04.003
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15.
  • Bashan Y. 1986a. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol. 51:1089–1098.
  • Bashan Y. 1986b. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biol Biochem. 18:297–301. doi:10.1016/0038-0717(86)90064-7
  • Bashan Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv. 16:729–770. doi:10.1016/S0734-9750(98)00003-2
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207. doi:10.1007/BF00018060
  • Bhise KK, Bhagwat PK, Dandge PB. 2017. Plant growth-promoting characteristics of salt tolerant Enterobacter cloacae strain KBPD and its efficacy in amelioration of salt stress in Vigna radiata L. J Plant Growth Regul. 36:215–226. doi:10.1007/s00344-016-9631-0
  • Bianco C, Defez R. 2009. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot. 60:3097–3107. doi:10.1093/jxb/erp140
  • Bleecker AB, Kende H. 2000. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 16:1–18. doi:10.1146/annurev.cellbio.16.1.1
  • Cicek N, Cakirlar H. 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulg J Plant Physiol. 28:66–74.
  • Claussen W. 2005. Proline as a measure of stress in tomato plants. Plant Sci. 168:241–248. doi:10.1016/j.plantsci.2004.07.039
  • Fiske CH, Subbarow Y. 1925. The colorimetric determination of phosphorus. J Biol Chem. 66:375–400.
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26:192–195.
  • Guo ZG, Liu HX, Wang SM, Tian FP, Cheng GD. 2005. Biomass, persistence and drought resistance of nine lucerne varieties in the dry environment of west China. Anim Prod Sci. 45:59–64. doi:10.1071/EA03119
  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil. 245:83–93. doi:10.1023/A:1020663916259
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol. 51:463–499. doi:10.1146/annurev.arplant.51.1.463
  • He Y, Wu Z, Tu L, Shan C. 2017. Effect of encapsulated Pseudomonas putida Rs-198 strain on alleviating salt stress of cotton. J Plant Nutr. 40:1180–1189. doi:10.1080/01904167.2016.1264595
  • He Y, Wu Z, Ye BC, Wang J, Guan X, Zhang J. 2016. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth. Eur J Soil Biol. 75:135–141. doi:10.1016/j.ejsobi.2016.05.002
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198.
  • Honma M, Shimomura T. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 42:1825–1831.
  • Kohler J, Caravaca F, Carrasco L, Roldan A. 2006. Contribution of Pseudomonas mendocina and Glomusintraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage. 22:298–304. doi:10.1111/j.1475-2743.2006.00041.x
  • Koyro HW. 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot. 56:136–146. doi:10.1016/j.envexpbot.2005.02.001
  • Lucy M, Reed E, Glick BR. 2004. Applications of free living plant growth-promoting rhizobacteria. A Van Leeuw J Microb. 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e
  • Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 63:541–556. doi:10.1146/annurev.micro.62.081307.162918
  • Marques AP, Pires C, Moreira H, Rangel AO, Castro PM. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem. 42:1229–1235. doi:10.1016/j.soilbio.2010.04.014
  • Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem. 42:565–572. doi:10.1016/j.plaphy.2004.05.009
  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE. 2016. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. ?Arch Microbiol. 198:379–387. doi:10.1007/s00203-016-1197-5
  • Neel JPS, Alloush GA, Belesky DP, Clapham WM. 2002. Influence of rhizosphere ionic strength on mineral composition, dry matter yield and nutritive value of forage chicory. J Agron Crop Sci. 188:398–407. doi:10.1046/j.1439-037X.2002.00593.x
  • Nicolaus B, Lama L, Esposito E, Manca MC, Improta R, Bellitti MR, Gambacorta A. 1999. Haloarcula spp able to biosynthesize exo-and endopolymers. J Ind Microbiol Biotechnol. 23:489–496. doi:10.1038/sj.jim.2900738
  • Penrose DM, Glick BR. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol. 47:368–372.
  • Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiol Plant. 118:10–15.
  • Penrose DM, Moffatt BA, Glick BR. 2001. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol. 47:77–80.
  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. 2015. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils. 51:403–415. doi:10.1007/s00374-015-0996-1
  • Pikovskaya RI. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya. 17:362–370.
  • Prescott LM, Harley JP, Klein DA. 2002. Laboratory exercises in microbiology. New York: McGraw-Hill Companies, Klein DA.
  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K. 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus. 2:1–7. doi:10.1186/2193-1801-2-1
  • Rekha PD, Lai WA, Arun AB, Young CC. 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2–4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour Technol. 98:447–451. doi:10.1016/j.biortech.2006.01.009
  • Russo A, Basaglia M, Casella S, Nuti MP. 2005. Pseudomonas fluorescens 134 as a Biological Control Agent (BCA) model in cell immobilization technology. Biotechnol Prog. 21:309–314. doi:10.1021/bp040030w
  • Ryan J, Estefan G, Rashid A. 2007. Soil and plant analysis laboratory manual. 2nd ed. International center for Agricultural Research in the Dryland Areas (ICARDA), Aleppo, Syria, 172.
  • Saharan BS, Nehra V. 2011. Plant growth promoting rhizobacteria: a critical review. Life Sci Medi Res. 21:1–30.
  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 4:406–425. doi:10.1093/oxfordjournals.molbev.a040454
  • Singh AK, Kumar R, Pareek A, Sopory SK, Singla-Pareek SL. 2012. Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. Mol Biotechnol. 52:205–216. doi:10.1007/s12033-011-9487-2
  • Son HJ, Park GT, Cha MS, Heo MS. 2006. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technol. 97:204–210. doi:10.1016/j.biortech.2005.02.021
  • Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 101:11030–11035. doi:10.1073/pnas.0404206101
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30:2725–2729. doi:10.1093/molbev/mst197
  • Tank N, Saraf M. 2003. Phosphate solubilization, exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella foenum-graecum. Indian J Microbiol. 43:37–40.
  • Upadhyaya CP, Akula N, Kim HS, Jeon JH, Ho OM, Chun SC, Park SW. 2011. Biochemical analysis of enhanced tolerance in transgenic potato plants overexpressing d-galacturonic acid reductase gene in response to various abiotic stresses. Mol Breed. 28:105–115. doi:10.1007/s11032-010-9465-6
  • Vassilev N, Vassileva M, Fenice M, Federici F. 2001. Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour Technol. 79:263–271.
  • Weir SC, Dupuis SP, Providenti MA, Lee H, Trevors JT. 1995. Nutrient-enhanced survival of and phenanthrene mineralization by alginate-encapsulated and free Pseudomonas sp. UG14Lr cells in creosote-contaminated soil slurries. Appl Microbiol Biotechnol. 43:946–951.
  • Wu Z, Guo L, Qin S, Li C. 2012. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol. 39:317–327. doi:10.1007/s10295-011-1028-2
  • Wu Z, Peng Y, Guo L, Li C. 2014. Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. Eur J Soil Biol. 60:81–87. doi:10.1016/j.ejsobi.2013.11.008
  • Wu Z, Zhao Y, Kaleem I, Li C. 2011. Preparation of calcium–alginate microcapsuled microbial fertilizer coating Klebsiella oxytoca Rs-5 and its performance under salinity stress. Eur J Soil Biol. 47:152–159. doi:10.1016/j.ejsobi.2010.11.008
  • Yaish MW, Antony I, Glick BR. 2015. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. A Van Leeuw J Microb. 107:1519–1532. doi:10.1007/s10482-015-0445-z
  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF. 2011. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere. 83:57–62. doi:10.1016/j.chemosphere.2011.01.041
  • Zohar‐Perez C, Ritte E, Chernin L, Chet I, Nussinovitch A. 2002. Preservation of Chitinolytic Pantoae agglomerans in a viable form by cellular dried alginate‐based carriers. Biotechnol Prog. 18:1133–1140. doi:10.1021/bp025532t

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.