790
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Foliar fertilization: possible routes of iron transport from leaf surface to cell organelles

, , &
Pages 279-300 | Received 23 Nov 2018, Accepted 05 May 2019, Published online: 12 May 2019

References

  • Abadía J, Vazquez S, Rellan-Alvarez R, El-Jendoubi H, Abadía A, Alvarez-Fernendez A, Lopez-Millan AF. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem. 49:471–482. doi:10.1016/j.plaphy.2011.01.026.
  • Abroskin DP, Fuentes M, Garcia-Mina JM, Klyain OI, Senik SV, Volkov DS, Perminova IV, Kulikova NA. 2016. The effect of humic acids and their complexes with iron on the functional status of plants grown under iron deficiency. Eurasian Soil Sc. 49:1099–1108. doi:10.1134/S1064229316100021.
  • AlChoubassi G, Aszyk J, Pisarek P, Bierla K, Ouerdane L, Szpunar J, Lobinski R. 2017. Advances in mass spectrometry for iron speciation in plants. Trends Anal Chem. doi:10.1016/j.trac.2017.11.006
  • Ali EA. 2012. Effect of iron nutrient care sprayed on foliage at different physiological growth stages on yield and quality of some durum wheat (Triticum durum L.) varieties in sandy soil. Asian J Crop Sci. 4:139–149. doi:10.3923/ajcs.2012.139.149.
  • Álvarez-Fernández A, Diaz-Benito P, Abadía A, Lopez-Millan A, Abadía J. 2014. Metal species involved in long distance metal transport in plants. Front Plant Sci. 5:1–20. doi:10.3389/fpls.2014.00105.
  • Álvarez-Fernández A, Garcia-Lavina P, Fidalgo C, Abadía J, Abadía A. 2004. Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Plant Soil. 263:5–15. doi:10.1023/B:PLSO.0000047717.97167.d4.
  • Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK. 2009. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol. 70:681–692. doi:10.1007/s11103-009-9500-3.
  • Armin M, Akbari S, Mashhadi S. 2014. Effect of time and concentration of nano-Fe application on yield and yield components of wheat. Int J Biosci. 4:69–75.
  • Arosio P, Ingrassia R, Cavadini P. 2009. Ferritins: a family of molecules for iron storage, antioxidation, and more. Biochim Biophys Acta. 7:589–599. doi:10.1016/j.bbagen.2008.09.004.
  • Aung MS, Masuda H, Kobayashi T, Nishizawa NK. 2018. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Sci Plant Nutr. 64:370–385. doi:10.1080/00380768.2018.1443754.
  • Balk J, Lobreaux S. 2005. Biogenesis of iron–sulfur proteins in plants. Trends Plant Sci. 10:324–331. doi:10.1016/j.tplants.2005.05.002.
  • Banakar R, Fernández AA, Abadía J, Capell T, Christou P. 2017. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotech J. 15:423–432. doi:10.1111/pbi.12637.
  • Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G, Nakanishi H, Nishizawa NK. 2011. The rice mitochondrial iron transporter is essential for plant growth. Nat Commun. 2:1–7. doi:10.1038/ncomms1326.
  • Bashir K, Nozoye T, Nagasaka S, Rasheed S, Miyauchi N, Seki M, Nakanishi H, Nishizawa NK. 2017. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice. J Exp Bot. 68:1785–1795. doi:10.1093/jxb/erx065.
  • Basiouny FM, Biggs RH. 1971. Uptake and distribution of iron in citrus. Proc Fla State Hort Soc. 84:17–22.
  • Bastow EL, de la Torre VSG, Maclean AE, Green RT, Merlot S, Thomine S, Balk J. 2018. Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. Plant Physiol. 177:1267–1276. doi:10.1104/pp.18.00478.
  • Bauer P, Thiel T, Klatte M, Bereczky Z, Brumbarova T, Hell R, Grosse I. 2004. Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol. 136:4169–4183. doi:10.1104/pp.104.047233.
  • Bernard DG, Cheng Y, Zhao Y, Balk J. 2009. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron–sulfur proteins in Arabidopsis. Plant Physiol. 151:590–602. doi:10.1104/pp.109.143651.
  • Beyer M, Lau S, Knoche M. 2005. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration. Planta. 220:474–485. doi:10.1007/s00425-004-1354-y.
  • Boonyaves K, Wu TY, Gruissem W, Bhullar NK. 2017. Enhanced grain levels in rice expressing an iron regulated metal transporter, nicotianamine synthase, and ferritin gene cassette. Front Plant Sci. 8:1–11. doi:10.3389/fpls.2017.00001.
  • Borodulin RR, Kubrina LN, Mikoyan VD, Poltorakov AP, Shvydkiy VO, Burbaev DS, Serezhenkov VA, Yakhontova ER, Vanin AF. 2013. Dinitrosyl iron complexes with glutathione as NO and NO+ donors. Nitric Oxide. 29:4–16. doi:10.1016/j.niox.2012.11.001.
  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. 2010. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot. 105:811–822. doi:10.1093/aob/mcq046.
  • Bruggemann W, Maas-Kantel K, Moog PR. 1993. Iron uptake by leaf mesophyll cells: the role of the plasma-membrane bound ferric-citrate reductase. Planta. 190:151–155. doi:10.1007/BF00196606.
  • Burkhardt J, Basi S, Pariyar S, Hunsche M. 2012. Stomatal penetration by aqueous solutions- an update involving leaf surface particles. New Phytol. 196:774–787. doi:10.1111/j.1469-8137.2012.04307.x.
  • Busi MV, Maliandi MV, Valdez H, Clemente M, Zabaleta EJ, Araya A, Gomez-Casati DF. 2006. Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe–S proteins and induces oxidative stress. Plant J. 48:873–882. doi:10.1111/j.1365-313X.2006.02923.x.
  • Chen S, Sacnchez-Fernández R, Lyver ER, Dancis A, Rea PA. 2007. Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem. 282:21561–21571. doi:10.1074/jbc.M702383200.
  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis thaliana. Plant Physiol. 154:8100–8819. doi:10.1104/pp.110.161109.
  • Connorton JM, Jones ER, Rodriguez-Ramiro I, Fairweather-Tait S, Uauy C, Balk J. 2017. Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol. 174:2434–2444. doi:10.1104/pp.17.00672.
  • Conte S, Lloyd A. 2010. The MAR1 transporter is an opportunistic entry point for antibiotics. Plant Signal Behav. 5:49–52.
  • de la Guardia MD, Alcantara E. 1996. Ferric chelate reduction by sunflower (Helianthus annuus L.) leaves: influence of light, oxygen, iron deficiency and leaf age. J Exp Bot. 47:669–675. doi:10.1093/jxb/47.5.669.
  • Díaz-Benito P, Banakar R, Rodriguez-Menendez S, Capell T, Pereiro R, Christou P, Abadía J, Fernández B, Alvarez-Fernández A. 2018. Iron and zinc in the embryo and endosperm of rice (Oryza sativa L.) seeds in contrasting 2ʹ-deoxymugienic acid/nicotianamine scenarios. Front Plant Sci. 9:1–17. doi:10.3389/fpls.2018.00001.
  • Dimkpa CO, Bindraban PS. 2016. Fortification of micronutrients for efficient agronomic production: a review. Agron Sustain Develop. 36:1–27. doi:10.1007/s13593-015-0346-6.
  • Divol F, Couch D, Conejero G, Roschzttardtz H, Mari S, Curie C. 2013. The Arabidopsis YELLOW STRIPE LIKE 4 and 6 transporters control iron release from the chloroplast. Plant Cell. 25:1040–1055. doi:10.1105/tpc.112.107672.
  • Duy D, Stube R, Wanner G, Philippar K. 2011. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiol. 155:1709–1722. doi:10.1104/pp.110.170233.
  • Duy D, Wanner G, Meda AR, von Wirén N, Soll J, Philippar K. 2007. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell. 19:986–1006. doi:10.1105/tpc.106.047407.
  • Eichert T, Burkhardt J. 2001. Quantification of stomatal uptake of ionic solutes using a new model system. J Exp Bot. 52:771–781.
  • Eichert T, Goldbach HE. 2008. Equivalent pore radii of hydrophilic foliar uptake in stomatous and astomatous leaf surfaces: further evidence for a stomatal pathway. Physiol Plant. 132:491–502. doi:10.1111/j.1399-3054.2007.01023.x.
  • Eide D, Broderius M, Fett J, Guerinot ML. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA. 93:5624–5628. doi:10.1073/pnas.93.11.5624.
  • El-Jendoubi H, Vazquez S, Calatayud A, Vavpetic P, Vogel-Mikus K, Pelicon P, Abadía J, Abadía A, Morales F. 2014. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics. Front Plant Sci. 5:1–16. doi:10.3389/fpls.2014.00002.
  • Erdal I, Kepenek K, Kizilgoz I. 2004. Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turk J Agric For. 28:421–427.
  • Etxeberria E, Gonzalez P, Borges AF, Brodersen C. 2016. The use of laser light to enhance the uptake of foliar-applied substances into citrus (Citrus sinensis) leaves. Appl Plant Sci. 4:1–10. doi:10.3732/apps.1500106.
  • Fernández V, Bahamonde HA, Peguero-Pina Gil-Pelegrin E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T. 2017. Physico-chemical properties of plant cuticles and their functional and ecological significance. J Exp Bot. 68:5293–5306. doi:10.1093/jxb/erx302.
  • Fernández V, Brown PH. 2013. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front Plant Sci. 4:1–5. doi:10.3389/fpls.2013.00001.
  • Fernández V, Del Rio V, Abadía J, Abadía A. 2006. Foliar iron fertilization of peach (Prunus persica L. batsch): effects of iron compounds, surfactants and other adjuvants. Plant Soil. 289:239–252. doi:10.1007/s11104-006-9132-1.
  • Fernández V, Del Rio V, Pumarino L, Igartua E, Abadía J, Abadía A. 2008. Foliar fertilization of peach (Pruniu spersica L. btasch) with different iron formulations: effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Sci Hort. 117:241–248. doi:10.1016/j.scienta.2008.05.002.
  • Fernàndez V, Ebert G, Winkelmann G. 2005. The use of microbial siderophores for foliar iron application studies. Plant Soil. 272:245–252. doi:10.1007/s11104-004-5212-2.
  • Fernández V, Guzman-Delgado P, Graca J, Santos S, Gil L. 2016. Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front Plant Sci. 7:1–14. doi:10.3389/fpls.2016.00001.
  • Fernández V, Sotiropoulos T, Brown P. 2013. Foliar fertilization: scientific principles and field practices. Paris: International fertilizer industry association.
  • Flis P, Ouerdane L, Grillet L, Curie C, Mari S, Lobinski R. 2016. Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. New Phytol. 211:1129–1141. doi:10.1111/nph.13964.
  • Gao F, Robe K, Gaymard F, Izquierdo E, Dubos C. 2019. The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors? Front Plant Sci. 10:1–8. doi:10.3389/fpls.2019.00001.
  • García MJ, Suárez V, Romera FJ, Alcántara E, Pérez-Vicente R. 2011. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol Biochem. 49:537–544. doi:10.1016/j.plaphy.2011.01.019.
  • Garnett TP, Graham RD. 2005. Distribution and remobilization of iron and copper in wheat. Ann Bot. 95:817–826. doi:10.1093/aob/mci085.
  • Gayomba SR, Zhai Z, Jung H, Vatamaniuk OK. 2015. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front Plant Sci. 6:1–13. doi:10.3389/fpls.2015.00001.
  • Ghafari H, Razmjoo J. 2013. Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. Intl J Agron Plant Prod. 4:2997–3003.
  • Gomez-Casati DF, Busi MV, Pagani MA. 2018. Plant frataxin in metal metabolism. Front Plant Sci. 9:1–8. doi:10.3389/fpls.2018.00001.
  • Gong X, Guo C, Terachi T, Cai H, Yu D. 2015. Tobacco PIC1 mediates iron transport and regulates chloroplast development. Plant Mol Biol Rep. 33:401–413. doi:10.1007/s11105-014-0758-5.
  • Gonzalez-Vallejo EB, Morales F, Cistue L, Abadía A, Abadía J. 2000. Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts. Plant Physiol. 122:337–344.
  • Grillet L, Mari S, Schmidt W. 2014a. Iron in seeds – loading pathways and subcellular localization. Front Plant Sci. 4:1–8. doi:10.3389/fpls.2013.00535.
  • Grillet L, Ouerdane L, Flis P, Hoang MTT, Isaure MP, Lobinski R, Curie C, Mari S. 2014b. Ascorbate efflux as a new strategy for iron reduction and transport in plants. J Biol Chem. 289:2515–2525. doi:10.1074/jbc.M113.514828.
  • Gunzman P, Fernández V, Garcia ML, Khayet M, Fernández A, Gil L. 2014. Localization of polysachharides in isolated and intact cuticles of eucalypt, poplar and pear leaves by enzyme-gold labelling. Plant PhysiolBiochem. 76:1–6.
  • Gutierrez-Carbonell E, Lattazino G, Albacete A, Rios JJ, Kehr J, Abadía A, Grusak MA, Abadía J, López-Millán AF. 2015. Effects of Fe deficiency on the protein profile of Brassica napus phloem sap. Proteomics. 15:3835–3853. doi:10.1002/pmic.201400464.
  • Guzman M, Valenzuela JL, Sanchez A, Romero L. 1990. A method for diagnosis the status of horticulture crops. II. Micronutrients. Phyton Int J Exp Bot. 51:43–56.
  • Habib M. 2009. Effect of foliar application of Zn and Fe on wheat yield and quality. Afr J Biotechnol. 8:6795–6798.
  • Han J, Song X, Li P, Yang H, Yin L. 2009. Maize ZmFDR3 localized in chloroplasts is involved in iron transport. Sci China Life Sci. 52:864–871. doi:10.1007/s11427-009-0108-2.
  • He W, Shohag MJI, Wei Y, Feng Y, Yang X. 2013. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer. Food Chem. 141:4122–4126. doi:10.1016/j.foodchem.2013.07.005.
  • Hu J, Dong L, Outten CE. 2008. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem. 283:29126–29134. doi:10.1074/jbc.M803028200.
  • Huang D, Dai W. 2015. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency. J Plant Physiol. 186-187:59–67. doi:10.1016/j.jplph.2015.09.001.
  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakanishi H, Mori S, Nishizawa NK. 2009. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem. 284:3470–3479. doi:10.1074/jbc.M806042200.
  • Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK. 2008. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol. 66:193–203. doi:10.1007/s11103-007-9262-8.
  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, et al. 2006. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe. Plant J. 45:335–346. doi:10.1111/j.1365-313X.2005.02624.x.
  • Jain A, Connolly EL. 2013. Mitochondrial iron transport and homeostasis in plants. Front Plant. Sci. 4:318. doi:10.3389/fpls.2013.00348
  • Jain A, Wilson GT, Connolly EL. 2014. The diverse roles of FRO family metalloreductases in iron and copper homeostasis. Front Plant Sci. 5:100. doi:10.3389/fpls.2014.00100.
  • Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J. 2007. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol Cell Proteomics. 6.3:394–412. doi:10.1074/mcp.M600250-MCP200.
  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML. 2008. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA. 105:10619–10624. doi:10.1073/pnas.0708367105.
  • Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK. 2012. OsYSL16 plays a role in the allocation of iron. Plant Mol Biol. 79:583–594. doi:10.1007/s11103-012-9930-1.
  • Kannan S. 1969. Factors related to iron absorption by enzymically isolated leaf cells. Plant Physiol. 44:1457–1460.
  • Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurisson SS, Nusinow DA, et al. 2018. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. Plant Cell Environ. 41:2263–2276. doi:10.1111/pce.13192.
  • Kim SA, Punshon T, Lanzirotti A, Liangtao L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML. 2006. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science. 314:1295–1298. doi:10.1126/science.1132563.
  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P. 2009. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 150:257–271. doi:10.1104/pp.109.136374.
  • Kobayashi T, Itai RN, Aung MS, Senoura T, Nakanishi H, Nishizawa NK. 2012. The rice transcription factor IDEF1 directly binds to iron and other divalent metals for sensing cellular iron status. Plant J. 69:81–91. doi:10.1111/j.1365-313X.2011.04772.x.
  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK. 2013. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Comm. 4:1–12. doi:10.1038/ncomms3792.
  • Kobayashi T, Nozoye T, Nishizawa NK. 2019. Iron transport and its regulation in plants. Free Radic Biol Med. 133:11–20. doi:10.1016/j.freeradbiomed.2018.10.439.
  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2004. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J. 39:415–424. doi:10.1111/j.1365-313X.2004.02146.x.
  • Kosegarten HU, Hoffmann B, Mengel K. 1999. Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol. 121:1069–1079.
  • Kruger C, Berkowitz O, Stephan UW, Hell R. 2002. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communisL. J Biol Chem. 277:25062–25069. doi:10.1074/jbc.M201896200.
  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, et al. 2001. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell. 13:89–100.
  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, et al. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 24:4041–4051. doi:10.1038/sj.emboj.7600864.
  • Larbi A, Morales F, Abadía A, Abadía J. 2010. Changes in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient Beta vulgaris plants in response to iron resupply. J Plant Physiol. 167:255–260. doi:10.1016/j.jplph.2009.09.007.
  • Larbi A, Morales F, Lopez-Millan AF, Gogorcena Y, Abadía A, Moong PR, Abadía J. 2001. Technical advance: reduction of Fe(III) chelates by mesophyll leaf disks of sugar beet. Multi-component origin and effects of Fe deficiency. Plant Cell Physiol. 42:94–105.
  • Lattanzio G, Sofía A, Matros A, Calvete JJ, Kehr J, Abadía A, Abadía J, López-Millán A. 2013. Protein profile of Lupinus texensis phloem sap exudates: searching for Fe- and Zn-containing proteins. Proteomics. 13:2283–2296. doi:10.1002/pmic.201200515.
  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Wu JF, Huang JL, Yeh KC. 2009. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol. 182:392–404. doi:10.1111/j.1469-8137.2009.02766.x.
  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M. 2002. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA. 99:13938–13943. doi:10.1073/pnas.212448699.
  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. 2010. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell Online. 22:2219–2236. doi:10.1105/tpc.110.074096.
  • López-Millán AF, Duy D, Philippar K. 2016. Chloroplast iron transport proteins-function and impact on plant physiology. Front Plant Sci. 7:1–12. doi:10.3389/fpls.2016.00001.
  • López-Millán AF, Morales F, Abadía A, Abadía J. 2000. Effects of iron deficiency on the composition of the leaf apoplastic fluid and xylem sap in sugar beet. Implications for iron and carbon transport. Plant Physiol. 124:873–884.
  • Lv J, Christie P, Zhang S. 2019. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano. 6:41–59. doi:10.1039/C8EN00645H.
  • Mary V, Ramos MS, Gillet C, Socha AL, Giraudat J, Agorio A, Merlot S, Clairet C, Kim SA, Punshon T, et al. 2015. Bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3natural resistance associated-macrophage protein4 double mutant. Plant Physiol. 169:748–759. doi:10.1104/pp.15.00380.
  • Mendoza-Conzatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, et al. 2014. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol Plant. 7:1455–1469. doi:10.1093/mp/ssu067.
  • Mengel K. 2002. Alternative or complementary role of foliar supply in mineral nutrition. Acta Hortic. 594:33–47. doi:10.17660/ActaHortic.2002.594.1.
  • Moosavi AA, Ronaghi A. 2011. Influence of foliar and soil applications of iron and manganese on soybean dry matter yield and iron-manganese relationship in a Calcareous soil. Aust J Crop Sci. 5:1550.
  • Morrissey J, Guerinot ML. 2009. Iron uptake and transport in plants: the good, the bad and the ionome. Chem Rev. 109:4553–4567. doi:10.1021/cr900112r.
  • Mukherjee I, Campbell NH, Ash JS, Connolly EL. 2006. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta. 22:31178–31190.
  • Müller B, Kovács K, Pham HD, Kavak Y, Pechoušek J, Machala L, Zbořil R, Szenthe K, Abadía J, Fodor F, et al. 2019. Chloroplasts preferentially take up ferric-citrate over iron-nicotianamine complexes in Brassica napus. Planta. 249:751–763. doi:10.1007/s00425-018-3037-0.
  • Naz S, Yousaf B, Tahir MA, Qadir A, Yousaf A. 2015. Iron and zinc bio-fortification strategies in wheat crop by exogenous application of micronutrients. Food Sci Qual Manage. 35:49–54.
  • Nikolic M, Cesco S, Römheld V, Varanini Z, Pinton R. 2003. Uptake of iron (59Fe) complexed to water-extractable humic substances by sunflowers leaves. J Plant Nutr. 26:2243–2252. doi:10.1081/PLN-120024278.
  • Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T. 2012. Identification of Zn-nicotianamine and Fe-2ʹ-deoxymugienic acid in the phloem sap from rice plants (Oryza sativa L.). Plant Cell Physiol. 53:381–390. doi:10.1093/pcp/pcr188.
  • Nozoye T, Otani M, Senoura T, Nakanishi H, Nishizawa NK. 2017. Overexpression of barley nicotianamine synthase 1 confers tolerance in the sweet potato to iron deficiency in calcareous soil. Plant Soil. 418:75–88. doi:10.1007/s11104-016-3134-4.
  • Ogo Y, Itai RN, Kobayashi T, Aung AS, Nakanishi H, Nishizawa NK. 2011. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol. 75:593–605. doi:10.1007/s11103-011-9752-6.
  • Pahlavan-Rad MR, Pessarakli M. 2009. Response of wheat plants to zinc, iron, and manganese applications and uptake and concentration of zinc, iron, and manganese in wheat grains. Commun Soil Sci Plant Anal. 40:1322–1332. doi:10.1080/00103620902761262.
  • Pandey R, Krishnapriya V, Bindraban PS. 2013. Biochemical nutrient pathways in plants applied as foliar spray: phosphorus and iron. VFRC Report 2013/1. Washington (DC): Virtual Fertilizer Research Center.
  • Petit JM, Briat JF, Lobreaux S. 2001. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J. 359:575–582. doi:10.1042/0264-6021:3590575.
  • Pich A, Scholz G. 1996. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine- stimulated copper transport in the xylem. J Exp Bot. 294:41–47. doi:10.1093/jxb/47.1.41.
  • Rajaie M, Tavakoly AR. 2018. Iron and/or acid foliar spray versus soil application of Fe-EDDHA for prevention of iron deficiency in Valencia orange grown on a calcareous soil. J Plant Nutr. 41:150–158.
  • Rakshit R, Patra AK, Purakayastha TJ, Singh RD, Pathak H, Dhar S. 2014. Super-optimal NPK along with foliar iron application influences bioavailability of iron and zinc of wheat. Proc Natl Acad Sci, India, Sect B Biol Sci. 86:159–164. doi:10.1007/s40011-014-0428-2.
  • Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F. 2009. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 57:400–412. doi:10.1111/j.1365-313X.2008.03698.x.
  • Rellán-Álvarez AJ, Alvarez-Fernández A. 2008. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 22:1553–1562. doi:10.1002/rcm.3523.
  • Rellán-Álvarez R, Giner-Martinez-Sierra J, Orduna J, Orera I, Angel Rodríguez-Castrillón J, Ignacio García-Alonso J, Abadía J, Álvarez-Fernández A. 2010. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol. 51:91–102. doi:10.1093/pcp/pcp170.
  • Rios JJ, Carrasco-Gil S, Abadía A, Abadía J. 2016. Using Perls staining to trace the iron uptake pathway in leaves of a Prunus rootstock treated with iron foliar fertilizers. Front Plant Sci. 7:1–13. doi:10.3389/fpls.2016.00001.
  • Rodríguez-Celma J, Ceballos-Laita L, Grusak MA, Abadía J, López-Millán A. 2016. Plant fluid proteomics: delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochim Biophys Acta Proteins Proteom. 1864:991–1002. doi:10.1016/j.bbapap.2016.03.014.
  • Rodríguez-Celma J, Green RT, Connorton JM, Kruse I, Cui Y, Ling HQ, Balk J. 2018. BRUTUS-LIKE proteins moderate the transcriptional response to iron deficiency in roots. bioRxiv [Preprint]. doi:10.1101/231365.
  • Rombolà AD, Brüggemann W, Tagliavini M, Marangoni B, Moog PR. 2000. Iron source affects iron reduction and re‐greening of kiwifruit (Actinidia deliciosa) leaves. J Plant Nutri. 23:1751–1765. doi:10.1080/01904160009382139.
  • Roschzttardtz H, Seguela-Arnaud M, Briat J, Vert G, Curie C. 2011. The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell. 23:2725–2737. doi:10.1105/tpc.111.088088.
  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N. 2004. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem. 279:9091–9096. doi:10.1074/jbc.M311799200.
  • Schagerlof U, Wilson G, Hebert H, Al-Karadaghi HC. 2006. Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana. Plant Mol Biol. 62:215–221. doi:10.1007/s11103-006-9015-0.
  • Schlegel TK, Schonherr J, Schreiber L. 2006. Rates of foliar penetration of chelated Fe(III): role of light, stomata, species, and leaf age. J Agric Food Chem. 54:6809–6813. doi:10.1021/jf061149i.
  • Schmidt W. 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol. 141:1–26. doi:10.1046/j.1469-8137.1999.00331.x.
  • Schonherr J. 2006. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot. 57:2471–2491. doi:10.1093/jxb/erj217.
  • Schuler M, Rellán-Álvarez R, Fink-Straube C, Abadía J, Bauer P. 2012. Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and in pollen tube growth in Arabidopsis. Plant Cell. 24:2380–2400. doi:10.1105/tpc.112.099077.
  • Severina IS, Bussygina OG, Pyatakova NV, Malenkova IV, Vanin AF. 2003. Activation of soluble guanylate cyclase by NO donors, S-nitrosothiols, and dinitrosyl–iron complexes with thiol containing ligands. Nitric Oxide. 8:155–163.
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. 2016. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater. 325:36–58. doi:10.1016/j.jhazmat.2016.11.063.
  • Shanmugam V, Wang Y, Tsednee M, Karunakaran K, Yeh K. 2015. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. Plant J. 84:464–477. doi:10.1111/tpj.13011.
  • Sharma S, Malhotra H, Borah P, Meena MK, Bindraban P, Chandra S, Pande V, Pandey R. 2018. Foliar application of organic and inorganic iron formulation induces differential detoxification response to improve growth and biofortification in soybean. Indian J Plant Physiol. doi:10.1007/s40502-018-0412-6
  • Shingles R, North M, McCarty RE. 2002. Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol. 128:1022–1030. doi:10.1104/pp.010858.
  • Sida-Arreola JP, Sanchez-Chavez E, Avila-Quezada GD, Zamudio-Flores PB, Muniz CHA. 2015. Iron biofortification and its impact on antioxidant system, yield and biomass in common bean. Plant Soil Environ. 61:573–576.
  • Singh SP, Keller B, Gruissem W, Bhullar NK. 2017. Rice nicotianamine synthase 2 expression improves dietary iron and zinc levels in wheat. Theor Appl Genet. 130:283–292. doi:10.1007/s00122-016-2808-x.
  • Solti A, Kovacs K, Basa B, Vertes A, Sarvari E, Fodor F. 2012. Uptake and incorporation of iron in sugar beet chloroplasts. Plant Physiol Biochem. 52:91–97. doi:10.1016/j.plaphy.2011.11.010.
  • Solti A, Muller B, Czech V, Sarvari E, Fodor F. 2014. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme. New Phytol. 202:920–928. doi:10.1111/nph.12715.
  • Song YL, Dong YZ, Tian XY, Wang WW, He ZL. 2017. Effects of nitric oxide and Fe supply on recovery of Fe deficiency induced chlorosis in peanut plants. Biol Planta. 61:155–168. doi:10.1007/s10535-016-0642-2.
  • Stacey MG, Koh S, Becker J, Stacey G. 2002. AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. Plant Cell. 14:2799–2811.
  • Stacey MG, Osawa H, Patel A, Gassmann W, Stacey G. 2006. Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta. 223:291–305. doi:10.1007/s00425-005-0087-x.
  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G. 2008. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol. 146:589–601. doi:10.1104/pp.107.108183.
  • Sudre D, Gutierrez-Carbonell E, Lattanzio G, Rellan-Alvarez R, Gaymard F, Wohlgemuth G, Fiehn O, Alvarez-Fernández A, Zamarreno AM, Bacaicoa E, et al. 2013. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J Exp Bot. 10:2665–2688. doi:10.1093/jxb/ert112.
  • Tagliavini M, Abadía J, Rombola AD, Abadía A, Tsipouridis C, Marangoni B. 2000. Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. J Plant Nutr. 23:2007–2022. doi:10.1080/01904160009382161.
  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. 2003. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell. 15:1263–1280.
  • Tanou G, Ziogas V, Molassiotis A. 2017. Foliar nutrition, biostimulants and prime-like dynamics in fruit tree physiology: new insights on an old topic. Front Plant Sci. 8:1–9. doi:10.3389/fpls.2017.00001.
  • Tarantino D, Morandini P, Ramirez L, Soave C, Murgia I. 2011. Identification of an Arabidopsis mitoferrin like carrier protein involved in Fe metabolism. Plant Physiol Biochem. 49:520–529. doi:10.1016/j.plaphy.2011.02.003.
  • Tarantino D, Santo N, Morandini P, Casagrande F, Braun HP, Heinemeyer J, Vigani G, Soave C, Murgia I. 2010. AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells. J Plant Physiol. 167:1598–1605. doi:10.1016/j.jplph.2010.06.020.
  • Teng YS, Su YS, Chen LJ, Lee YJ, Hwang I, Li HM. 2006. Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell. 18:2247–2257. doi:10.1105/tpc.106.044305.
  • Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK. 2009. 52Fe translocation in barley as monitored by a positron emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiol. 50:48–57. doi:10.1093/pcp/pcn192.
  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 14:1223–1233.
  • Watts RN, Richardson DR. 2002. The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from cells. NO intercepts iron before incorporation into ferritin and indirectly mobilizes iron from ferritin in a glutathione-dependent manner. Eur J Biochem. 269:3383–3392.
  • Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ. 2005. Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol. 46:1505–1514. doi:10.1093/pcp/pci163.
  • Wu TY, Gruissem W, Bhullar NK. 2018. Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Sci. 270:13–22. doi:10.1016/j.plantsci.2018.02.002.
  • Zancani M, Peresson C, Biroccio A, Federici G, Urbani A, Murgia I, Soave C, Micali F, Vianello A, Macri F. 2004. Evidence for the presence of ferritin in plant mitochondria. Eur J Biochem. 271:3657–3664. doi:10.1111/j.1432-1033.2004.04300.x.
  • Zhai Z, Gayomba SR, Jung HI, Vimalakumari NK, Pineros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, et al. 2014. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell. 26:2249–2264. doi:10.1105/tpc.114.123737.
  • Zhang C, Shinwari KI, Luo L, Zheng L. 2018. OsYSL13 is involved in iron distribution in rice. Int J Mol Sci. 19:1–14. doi:10.3390/ijms19113537.
  • Zhang Y, Xu YH, Yi HY, Gong JM. 2012. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J. 72:400–410. doi:10.1111/j.1365-313X.2012.05088.x.
  • Zuo J, Wu Z, Li Y, Shen Z, Xiangyang F, Zhang M, Ye H. 2017. Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly. Plant Physiol. 173:2096–2109. doi:10.1104/pp.16.01760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.