423
Views
16
CrossRef citations to date
0
Altmetric
Articles

Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils

, , , , , , & show all
Pages 458-472 | Received 15 Oct 2018, Accepted 13 May 2019, Published online: 30 May 2019

References

  • Bai R, Wang JT, Deng Y, He JZ, Feng K, Zhang LM. 2017. Microbial community and functional structure significantly varied among distinct types of paddy soils but responded differently along gradients of soil depth layers. Front Microbiol. 8:1–18. doi:10.3389/fmicb.2017.00001.
  • Balota EL, Machineski O, Hamid KIA, Yada IFU, Barbosa GMC, Nakatani AS, Coyne MS. 2014. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil. Sci Total Environ. 490:397–404. doi:10.1016/j.scitotenv.2014.05.019.
  • Bartlett RJ, Ross DS. 1988. Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Sci Soc Am J. 52:191–192. doi:10.2136/sssaj1988.03615995005200040055x.
  • Bradley K, Drijber RA, Knops J. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem. 38:1583–1595. doi:10.1016/j.soilbio.2005.11.011.
  • Chen W, Hoitinik AJ, Schmitthenner AF, Touvinen OH. 1988. The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytophatology 78:314–322. doi:10.1094/Phyto-78-314.
  • Comte J, Giorgio PAD. 2010. Linking the patterns of change in composition and function in bacterioplankton successions along environmental gradients. Ecology 91:1466–1476. doi:10.1890/09-0848.1.
  • Delgado-Baquerizo M, Maestre FT, Reich PB. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 7:10541. doi:10.1038/ncomms10541.
  • Donagema GK, Campos DVB, De, Calderano SB, Teixeira WG, Viana JHM. 2011. Manual de métodos de análise de solos, 2nd ed. Rio de Janeiro: Embrapa Solos. (Org.).
  • Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HTS, Veen JA. 2013. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Global Change Biol. 19:621–636. doi:10.1111/gcb.12045.
  • Eivazi F, Tabatabai MA. 1977. Phosphatases in soils. Soil Biol Biochem. 9:167–172. doi:10.1016/0038-0717(77)90070-0.
  • Eivazi F, Tabatabai MA. 1988. Glucosidases and galactosidases in soils. Soil Biol Biochem. 20:601–606. doi:10.1016/0038-0717(88)90141-1.
  • Ferraz JBS, Felício PED. 2010. Production systems – an example from Brazil. Meat Sci. 84:238–243. doi:10.1016/j.meatsci.2009.06.006.
  • Fonte SJ, Nesper M, Hegglin D, Velásquez JE, Ramirez B, Rao IM, Bernasconi SM, Bunemann EK, Frossad E, Oberson E. 2014. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biol Biochem. 68:150–157. doi:10.1016/j.soilbio.2013.09.025.
  • Hannachi N, Cocco S, Fornasier F, Agnelli A, Brecciaroli G, Massaccesi L, Weindorf D, Corti G. 2015. Effects of cultivation on chemical and biochemical properties of land soils from southern Tunisia. Agr Ecosyst Environ. 199:249–260. doi:10.1016/j.agee.2014.09.009.
  • IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO. World Soil Resources Reports No. 106.
  • Kandeler E, Gerber H. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soils 6:68–72. doi:10.1007/BF00257924.
  • Karchegani PM, Ayoubi S, Lu SG, Honarju N. 2011. Use of magnetic measures to assess soil redistribution following deforestation in hilly region. J Appl Geophy. 75(2):227–236. doi:10.1016/j.jappgeo.2011.07.017.
  • MachadoC. B., Lima, J. R. D. S., Antonino, A. C., Souza, E. S. D., Souza, R., & Alves, E. M. 2016. Daily and seasonal patterns of CO2 fluxes and evapotranspiration in maize-grass intercropping. Revista Brasileira de Engenharia Agrícola e Ambiental. 20(9):777–782.
  • Margesin R, Hämmerle M, Tscherko D. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microb Ecol. 53:259–269. doi:10.1007/s00248-006-9136-7.
  • Mechri B, Attia F, Tekaya M, Cheheb H, Hammami M. 2014. Agronomic application of olive mill wastewaters with rock phosphate increase the 10Me18: 0 fatty acid marker of actinomycetes and change rhizosphere microbial functional groups under long-term field conditions. Soil Biol Biochem. 70:62–65. doi:10.1016/j.soilbio.2013.12.007.
  • Mendonça ES, Matos ES. 2005. Matéria orgânica do solo: métodos de análises. Viçosa: Editora UFV.
  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’gara F. 2010. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Env Microbiol Rep. 2:403–411. doi:10.1111/j.1758-2229.2009.00105.x.
  • Navarrete AA, Taketani RG, Mendes LW, Cannavan FDS, Moreira FMDS, Tsai SM. 2011. Land-use systems affect Archaeal community structure and functional diversity in Western Amazon soils. R Bras Ci Solo. 35:1527–1540. doi:10.1590/S0100-06832011000500007.
  • Navarrete D, Sitch S, Aragão LE, Pedroni L. 2016. Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Glob Chang Biol. 22:3503–3517. doi:10.1111/gcb.13266.
  • Oliveira SP, Cândido MJD, Weber OB, Xavier FAZ, Escobar MEO, Oliveira TS. 2016. Conversion of forest into irrigated pasture I. Changes in the chemical and biological properties of the soil. Catena 137:508–516. doi:10.1016/j.catena.2015.10.017.
  • Pandey D, Agrawal M, Bohra JS. 2014. Effects of conventional tillage and no tillage permutations on extracellutar soil enzyme activities and microbial biomass under rice cultivation. Soil Till Res. 136:51–60. doi:10.1016/j.still.2013.09.013.
  • Rasse DP, Rumpel C, Dignac MF. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y.
  • Ravindran A, Yang SS. 2015. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. J Microbiol Immunol Infect. 48:362–369. doi:10.1016/j.jmii.2014.02.003.
  • Rufin P, Müller H, Pflugmacher D, Hostert P. 2015. Land use intensity trajectories on Amazonian pastures derived from Landsat time series. Int J Appl Earth Obs Geoinf. 41:1–10. doi:10.1016/j.jag.2015.04.010.
  • Santos JCB, Souza Júnior VS, Corrêa MM, Ribeiro MR, Almeida MC, Borges LEP. 2012. Characterization of regosols in the semiarid region of Pernambuco, Brazil. Rev Bras Ciên Solo. 36:683–695. doi:10.1590/S0100-06832012000300001.
  • Santos UJ, Medeiros EV, Duda GP, Marques MC, Souza ES, Brossard M, Hammecker C. 2018. Land use changes the soil carbon stocks, microbial biomass and fatty acid methyl ester (FAME) in Brazilian semiarid area. Arch Agron Soil Sci. 1:1–15.
  • Silva EO, Medeiros EV, Duda GP, Lira-Júnior MA, Brossard M, Oliveira JB, Santos UJ, Hammecker C. 2019. Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region. Catena 172:397–407. doi:10.1016/j.catena.2018.09.007.
  • Silva JMD, Medeiros EVD, Duda GP, Barros JA, Santos UJD. 2017. FAMES and microbial activities involved in the suppression of cassava root rot by organic matter. Rev Caatinga. 30(3):708–717. doi:10.1590/1983-21252017v30n319rc.
  • Stone MM, DeForest JL, Plante AF. 2014. Changes in extracellular enzyme activity and microbial community structure with soil depth at the luquillo critical zone observatory. Soil Biol Biochem. 75:237–247. doi:10.1016/j.soilbio.2014.04.017.
  • Tabatabai MA, Bremmer JM. 1972. Assay of urease activity of soils. Soil Biol Biochem. 4:479–487. doi:10.1016/0038-0717(72)90064-8.
  • Tate KR, Ross DJ, Feltham CW. 1988. A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol Biochem. 20:329–335. doi:10.1016/0038-0717(88)90013-2.
  • Thompson IP, Van Der Gast CJ, Ciric L, Singer AC. 2005. Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol. 7:909–915. doi:10.1111/j.1462-2920.2005.00757.x.
  • Tischer A, Blagodatskaya E, Hamer U. 2015. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions. Soil Biol Biochem. 89:226–237. doi:10.1016/j.soilbio.2015.07.011.
  • Torsvik V, Lise Ovreas L, Thingstad TF. 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296:1064–1066. doi:10.1126/science.1071698.
  • Wang B, Xue S, Liu GB, Zhang GH, Li G, Ren ZP. 2012. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area. Northwest China. Catena 92:186–195. doi:10.1016/j.catena.2011.12.004.
  • Xun W, Huang T, Zhao J, Ran W, Wang B, Zhang R. 2015. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biol Biochem. 90:10–18. doi:10.1016/j.soilbio.2015.07.018.
  • Yeomans JC, Bremner JM. 1988. A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plan. 19:1467–1476. doi:10.1080/00103628809368027.
  • Zhang C, Liu G, Song Z, Wang J, Guo L. 2018. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands. Soil Biol Biochem. 124:47–58. doi:10.1016/j.soilbio.2018.05.026.
  • Zhou Y, Ning L, Bai X. 2018. Spatial and temporal changes of human disturbances and their effects on landscape patterns in the Jiangsu coastal zone, China. Ecol Indic. 93:111–122. doi:10.1016/j.ecolind.2018.04.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.