137
Views
2
CrossRef citations to date
0
Altmetric
Articles

Using a nitrogen mineralization index will improve soil productivity rating by artificial neural networks

ORCID Icon, ORCID Icon, , , , , , , & show all
Pages 517-531 | Received 09 Jan 2019, Accepted 30 May 2019, Published online: 09 Jun 2019

References

  • Alvarez R. 2009. Predicting average yield and regional production of wheat in the Argentine Pampas by an artificial neural network approach. Eur J Agron. 30:70–77. doi:10.1016/j.eja.2008.07.005.
  • Alvarez R, Alvarez C, Daniel P, Richter V, Blotta L. 1998. Nitrogen distribution in soil density fractions and its relation with nitrogen mineralization under different tillage systems. Austr J Soil Res. 36:247–256. doi:10.1071/S97027.
  • Alvarez R, Gimenez A, Caffaro M, Pagnanini P, Recondo V, Molina C, Berhongaray G, Mendoza M, Ramil D, Facio F, et al. 2018. Land use affected nutrient mass with minor impact on stoichiometry ratios in Pampean soils. Nutr Cycl Agroecosys. 110:257–276. doi:10.1007/s10705-017-9896-0.
  • Alvarez R, Lavado R. 1998. Climatic control of the organic matter of the pampas and chaco soils. Geoderma 83:127–141. doi:10.1016/S0016-7061(97)00141-9.
  • Alvarez R, Steinbach HS. 2011. Modeling apparent nitrogen mineralization under field conditions using regressions an artificial neural networks. Agron J. 103:1159–1168. doi:10.2134/agronj2010.0254.
  • Alvarez R, Steinbach HS, Alvarez CR, De Paepe JL. 2015. Chapter 15, Fertilizer use in pampean agroecosystems: impact on productivity and nutrient balance. In: Sinha S, Pant KK, Bajrai S, Govil JN, editors. Chemical engineering series, fertilizer technology vol. 2: biofertilizers. USA: Studdium Press LLC; p. 352–368.
  • Alvarez R, Steinbach HS, De Paepe JL. 2014. A regional audit of nitrogen fluxes in pampean agroecosystems. Agric Ecosys Environ. 184:1–8. doi:10.1016/j.agee.2013.11.003.
  • Alvarez R, Steinbach HS, De Paepe JL. 2016. Historical balance of nitrogen, phosphorus, and sulfur of the Argentine Pampas. Ciencia Del Suelo. 34:231–244.
  • Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova Z, Hatté C. 2018. Atmosphere–soil carbon transfer as a function of soil depth. Nature. 559:599–602. doi:10.1038/s41586-018-0328-3.
  • Barrett JE, Burke IC. 2000. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biol Biochem. 32:1707–1716.
  • Bechtold JC, Naiman RJ. 2006. Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna. Soil Biol Biochem. 38:1325–1333. doi:10.1016/j.soilbio.2005.09.028.
  • Berhongaray G, Alvarez R, De Paepe JL, Caride C, Cantet R. 2013. Land use effects on soil carbon in the Argentine Pampas. Geoderma 192:97–110. doi:10.1016/j.geoderma.2012.07.016.
  • Bremner JM. 1996. Chapter 37, Nitrogen-Total. In: DL Sparks,  AL Page, PA Helmke, RH Loeppert, PN Soltanpour, MA Tabatabai, CT Johnston, ME Sumner, editor. Methods of soil analysis, part 3. chemical methods. Soil Sci. Soc. Am. Book Series 5. Madison (USA): The Soil Science Society of America; p. 1085–1121.
  • Brouwer RK. 2004. A hybrid neural network for input that is both categorical and quantitative. Int J Intell Syst. 19:979–1001. doi:10.1002/(ISSN)1098-111X.
  • Chen H, Marhan S, Billen N, Stahr K. 2009. Soil organic-carbon and total nitrogen stocks as affected by different land uses in Bade-Württemberg (Southwest Germany). J Plant Nutr Soil Sci. 172:32–42. doi:10.1002/jpln.200700116.
  • De Paepe JL, Alvarez R. 2013. Developments of a soil productivity index using an artificial neural network approach. Agron J. 105:1803–1813. doi:10.2134/agronj2013.0070.
  • Dessureault-Rompé J, Zebarth BJ, Burton DL, Sharifi M, Cooper J, Grant CA, Drury CF. 2010. Relationships among mineralizable soil nitrogen, soil properties, and climatic indices. Soil Sci Soc Am J. 74:1218–1227. doi:10.2136/sssaj2009.0213.
  • Dessureault-Rompré J, Zebarth BJ, Burton DL, Grant CA. 2016. Depth distribution of mineralizable nitrogen pools in contrasting soils in a semi-arid climate. Can J Soil Sci. 96:1–11. doi:10.1139/cjss-2015-0048.
  • Díaz Zorita M, Buschiazzo DE, Peinemann N. 1999. Soil organic matter and wheat productivity in the Semiarid Argentine Pampas. Agron J. 91:276–279. doi:10.2134/agronj1999.00021962009100020016x.
  • Dintwe K, Okin GS, D´Odorico P, Hrast T, Mladenov N, Handorean A, Bhattachan A, Caylor KK. 2015. Soil organic C and N pools in the Kalahari: potential impacts of climate change on C sequestration in savannas. Plant Soil 396:27–44. doi:10.1007/s11104-014-2292-5.
  • Dodd MB, Lauenroth WK, Burke IC. 2000. Nitrogen availability through a coarse-textured soil profile in the shortgrass steppe. Soil Sci Soc Am.J. 64:391–398. doi:10.2136/sssaj2000.641391x.
  • Fageria NK. 2012. Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plan. 43:2063–2113. doi:10.1080/00103624.2012.697234.
  • Feller C, Blanchart E, Bernoux M, Lal R, Manlay R. 2012. Soil fertility concepts over the past two centuries: the importance attributed to soil organic matter in developed and developing countries. Arch Agron Soil Sci. 58:S3–S21. doi:10.1080/03650340.2012.693598.
  • Fila G, Bellocchi G, Acutis M, Donatelli M. 2003. IRENE: a software to evaluate model performance. Eur J Agron. 18:369–372. doi:10.1016/S1161-0301(02)00129-6.
  • Gami SK, Lauren JG, Duxbury JM. 2009. Influence of soil texture and cultivation on carbon and nitrogen levels in soils of the eastern Indo-Gangetic Plains. Geoderma 153:304–311. doi:10.1016/j.geoderma.2009.08.003.
  • Iversen CM, Hooker TD, Classen AT, Norby RJ. 2011. Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Global Change Biol. 17:1130–1139. doi:10.1111/j.1365-2486.2010.02240.x.
  • Jackson RB, Candell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia. 108:389–411. doi:10.1007/BF00333714
  • Joergensen SE, Bendoricchio G. 2001. Fundamentals of ecological modelling. Third ed. Oxford (UK): Elsevier; p. 530.
  • Johannes A, Matters A, Schulin R, Weisskpf P, Baveye PC. 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?. Geoderma 302:14–21. doi:10.1016/j.geoderma.2017.04.021.
  • Kader MA, Sleutel S, Begum SA, D´Haene K, Jegajeevagan K, De Neve S. 2010. Soil organic matter fractionation as a tool for predicting nitrogen mineralization in silty arable soils. Soil Use Manag. 26:494–507. doi:10.1111/j.1475-2743.2010.00303.x.
  • Kleinbaum DG, Kupper LL. 1979. Applied regression analysis and other multivariable methods. Massachusetts (USA): Duxbury Press; p. 555.
  • Kobayashi K, Salam MU. 2000. Comparing simulated and measured values using mean square deviation and its components. Agron J. 92:345–352. doi:10.2134/agronj2000.922345x.
  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Grootes PM, Hamer U, Heim A, Jandi G, et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci. 171:91–110. doi:10.1002/jpln.200700049.
  • Matus FJ, Lusk CH, Maire CR. 2008. Effects of soil texture, carbon input rates, and litter quality on free organic matter and nitrogen mineralization in Chilean rain forest and agricultural soils. Commun Soil Sci Plant Anal. 39:187–201. doi:10.1080/00103620701759137.
  • Miao Y, Mulla D, Robert P. 2006. Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precis Agr. 7:117–135. doi:10.1007/s11119-006-9004-y.
  • Mulvaney RL. 1996. Chapter 38, Nitrogen-Inorganic forms. In: DL Sparks,AL Page, PA Helmke, RH Loeppert, PN Soltanpour, MA Tabatabai, CT Johnston, ME Sumner, editor. Methods of Soil Analysis, Part 3. Chemical Methods. Soil Sci. Soc. Am. Book Series 5. Madison (USA): The Soil Science Society of America; p. 1123–1184.
  • Neter J, Wasserman W, Kutner MH. 1990. Applied linear statistical models. Illinois (USA): Irwin Inc Publisher; p. 1172.
  • O´Connell AM, Grove TS, Mendham DS, Rance SJ. 2003. Changes in soil N status and N supply rates in agricultural land afforested with eucalyptus in south-western Australia. Soil Biol Biochem. 35:1527–1536. doi:10.1016/S0038-0717(03)00242-6.
  • Park SJ, Vlek PLG. 2002. Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma. 109:117–140. doi:10.1016/S0016-7061(02)00146-5.
  • Poeplau C, Don A. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi:10.1016/j.geoderma.2012.08.003.
  • Poeplau C, Don A, Vesterdal L, Leifeld J, van Wesemael BAS, Schumacher J, Gensior A. 2011. Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Change Biol. 17:2415–2427. doi:10.1111/j.1365-2486.2011.02408.x.
  • Rashid MI, de Goede RGM, Brussaard L, Bloem J, Lantinga EA. 2014. Production-ecological modelling explains the difference between potential soil N mineralization and actual herbage N uptake. Appl Soil Ecol. 84:83–92. doi:10.1016/j.apsoil.2014.07.002.
  • Romano N, Alvarez R, Bono A, Steinbach HS. 2015. Comparison of nitrogen fertilizer demand for wheat production between humid and semi-arid portions of the Argentinean Pampas using a mass balance approach. Arch Agron Soil Sci. 61:1409–1422. doi:10.1080/03650340.2014.1003546.
  • Ros GH, Temminghoff EJM, Hoffland E. 2011. Nitrogen mineralization: a review and meta-analysis of the predictive value of soil test. Eur J Soil Sci. 62:162–173. doi:10.1111/j.1365-2389.2010.01318.x.
  • Satorre E, Slafer G. 1999. Chapter 15, Wheat production systems of the Pampas. In: E Satorre, G Slafer, editor. Wheat. Ecology and physiology of yield determination. New York (USA): ETH Press; p. 333–348.
  • Schipper LA, Parfitt RL, Ross C, Bazisden WT, Claydon JJ, Fraser S. 2010. Gains and losses on C and N stocks of New Zealand pasture soils depend on land use. Agric Ecosyst Environ. 139:611–617. doi:10.1016/j.agee.2010.10.005.
  • Smit A, Velthof GL. 2010. Comparison of indices for the prediction of nitrogen mineralization after destruction of managed grassland. Plant Soil 331:139–150. doi:10.1007/s11104-009-0240-6.
  • Wade J, Horwarth WR, Burger MB. 2016. Integrating soil biological and chemical indices to predict net nitrogen mineralization across California agricultural systems. Soil Sci Soc. Am J. 22:1675–1687. doi:10.2136/sssaj2016.07.0228.
  • Wang T, Kang F, Cheng X, Han H, Ji W. 2016. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area in North China. Soil Till Res. 163:176–184. doi:10.1016/j.still.2016.05.015.
  • Wang WJ, Chalk PM, Chen D, Smith CJ. 2001. Nitrogen mineralization, immobilization and loss, and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of soils. Soil Biol Biochem. 33:1305–1315. doi:10.1016/S0038-0717(01)00034-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.