161
Views
4
CrossRef citations to date
0
Altmetric
Articles

Soil microbiological and biochemical changes as a consequence of land management and water erosion in a semiarid environment

, , &
Pages 763-777 | Received 01 Aug 2018, Accepted 28 Jun 2019, Published online: 10 Jul 2019

References

  • Adam G, Duncan H. 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem. 33:943–951. doi:10.1016/S0038-0717(00)00244-3.
  • Ahuja LR. 2003. Quantifying agricultural management effects on soil properties and processes. Geoderma. 116:1–2. doi:10.1016/S0016-7061(03)00090-9.
  • Armas-Herrera CM, Mora JL, Guerra JA, Arbelo CD, Rodríguez-Rodríguez A. 2013. Depth distribution of humic substances in Andosols in relation to land management and soil erosion. Soil Use Manage. 29:77–86. doi:10.1111/sum.12013.
  • Baranian Kabir E, Bashari H, Mosaddeghi MR, Bassiri M. 2017. Soil aggregate stability and organic matter as affected by land-use change in central Iran. Arch Agron Soil Sci. 63:1823–1837. doi:10.1080/03650340.2017.1308492.
  • Beyer L, Wachendorf C, Elsner DC, Knabe R. 1993. Suitability of dehydrogenase activity assay as an index of soil biological activity. Biol Fertil Soils. 16:52–56. doi:10.1007/BF00336515.
  • Blake GR, Hartge KH. 1986. Bulk density. In: Klute A, editor. Methods of Soil Analysis. 2nd ed. Madison: American Society of Agronomy—Soil Science Society of America; p. 363–382.
  • Bossio DA, Scow KM. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol. 35:265–278.
  • Brasseur B, Spicher F, Lenoir J, Gallet-Moron E, Buridant J, Horen H. 2018. What deep-soil profiles can teach us on deep-time pH dynamics after land use change. Land Degrad Dev. 29:2951–2961. doi:10.1002/ldr.3065.
  • Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–45. doi:10.1097/00010694-194501000-00006.
  • Cai X, Lin Z, Penttinen P, Li Y, Li Y, Luo Y, Yue T, Jiang P, Fu W. 2018. Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. For Ecol Manage. 422:161–171. doi:10.1016/j.foreco.2018.04.022.
  • Campitelli P, Aoki A, Gudelj O, Rubenacker A, Sereno R. 2010. Soil quality indicators of the effects of land use and agricultural practices in a pilot area of the central region of Córdoba. Ciencia Del Suelo. 28:223–231.
  • Chen D, Wei W, Chen L. 2017. Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Sci Rev. 173:109–121. doi:10.1016/j.earscirev.2017.08.007.
  • Cooper JM, Warman PR. 1997. Effects of three fertility amendments on soil dehydrogenase activity, organic C and pH. Can J Soil Sci. 77:281–283. doi:10.4141/S96-023.
  • Daljit Singh KS, Arifin A, Radziah O, Shamshuddin J, Hazandy AH, Majid NM, Aiza-Shaliha J, Rui TX, Keeren SR. 2013. Status of soil microbial population, enzymatic activity and biomass of selected natural, secondary and rehabilitated forests. Am J Environ Sci. 9:301–309. doi:10.3844/ajessp.2013.301.309.
  • De Boodt M, De Leenheer L. 1967. Determination of aggregate stability by the change in mean weigth diameter. West-Europan methods for soil structure determinations. Ghent (Belgium): State Faculty Agricultural Sciences.
  • Fanin N, Hättenschwiler S, Fromin N. 2014. Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil. Plant Soil. 379:79–91. doi:10.1007/s11104-014-2051-7.
  • Fernández R, Frasier I, Quiroga A, Noellemeyer E. 2019. Pore morphology reveals interaction of biological and physical processes for structure formation in soils of the semiarid Argentinean Pampa. Soil Till Res. 191:256–265. doi:10.1016/j.still.2019.04.011.
  • GaitánJ, Navarro M, Vuegen L, Pizarro M. 2017. Estimación de la pérdida de suelo por erosión hídrica en la República Argentina. Buenos Aires: INTA Press.
  • Gajda AM, Przewloka B, Gawryjolek K. 2013. Changes in soil quality associated with tillage system applied. Int Agrophys. 27:133–141. doi:10.2478/v10247-012-0078-7.
  • Garcia C, Hernandez T, Costa F. 1997. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Comm Soil Sci Plant Anal. 28:123–134. doi:10.1080/00103629709369777.
  • Huang J, Li Z, Zeng G, Zhang J, Li J, Nie X, Ma W, Zhang X. 2013. Microbial responses to simulated water erosion in relation to organic carbon dynamics on a hilly cropland in subtropical China. Ecol Eng. 60:67–75. doi:10.1016/j.ecoleng.2013.07.040.
  • Janzen HH, Campbell CA, Brandt SA, Lafond LP, Townley Smith L. 1992. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J. 56:1779–1806. doi:10.2136/sssaj1992.03615995005600060025x.
  • Kandeler E, Stemmer M, Klimanek E-M. 1999. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem. 31:261–273. doi:10.1016/S0038-0717(98)00115-1.
  • Lambin E, Meyfroidt P. 2010. Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy. 27:108–118. doi:10.1016/j.landusepol.2009.09.003.
  • Lin Z, Li Y, Tang C, Luo Y, Fu W, Cai X, Li Y, Yue T, Jiang P, Hu S, et al. 2018. Converting natural evergreen broadleaf forests to intensively managed moso bamboo plantations affects the pool size and stability of soil organic carbon and enzyme activities. Biol Fertil Soils. 54:467–480. doi:10.1007/s00374-018-1275-8.
  • Liu D, An SS, Cheng Y, Keiblinger K, Huang YM. 2014. Variability in soil microbial biomass and diversity among different aggregate-size fractions of different land use types. Soil Sci. 179:242–249. doi:10.1097/SS.0000000000000064.
  • Luo L, Meng H, Gu J. 2017. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J Environ Manage. 197:539–549. doi:10.1016/j.jenvman.2017.04.023.
  • Maharjan M, Sanaullah M, Razavi B, Kuzyakov Y. 2017. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Appl Soil Ecol. 113:22–28. doi:10.1016/j.apsoil.2017.01.008.
  • Makoi JH JR, Ndakidemi PA. 2008. Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol. 7:181–191.
  • Montecchia MS, Correa OS, Soria MA, Frey SD, García AF, Garland JL. 2011. Multivariate approach to characterizing soil microbial communities in pristine and agricultural sites in northwest Argentina. Appl Soil Ecol. 47:176–183. doi:10.1016/j.apsoil.2010.12.008.
  • Moreno-de Las Heras M. 2009. Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-continental environment. Geoderma. 149:249–256. doi:10.1016/j.geoderma.2008.12.003.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, editor. Methods of soil analysis. Madison: SSSA book series; p. 961–1010.
  • Nie X, Li Z, Huang J, Huang B, Xiao H, Zeng G. 2017. Soil organic carbon fractions and stocks respond to restoration measures in degraded lands by water erosion. Environ Manage. 59:816–825. doi:10.1007/s00267-016-0817-9.
  • Pérez-Sánchez J, Senent-Aparicio J. 2016. Estimating rainfall erositivity in semiarid regions. Comparison of expressions and parameters using data from the Guadalentín basin (SE Spain). Soil Water Res. 11:75–82. doi:10.17221/279/2014-SWR.
  • Pilgrim E, Macleod C, Blackwell M, Bol R, Hogan D, Chadwick D, Cardenas L, Misselbrook T, Haygarth P, Brazier R, et al. 2010. Interactions among agricultural production and other ecosystem services delivered from European temperate grassland systems. Adv Agron. 109:117–154.
  • Sarapatka B, Cap L, Bila P. 2018. The varying effect of water erosion on chemical and biochemical soil properties in different parts of Chernozem slopes. Geoderma. 314:20–26. doi:10.1016/j.geoderma.2017.10.037.
  • Shi W. 2011. Agricultural and ecological significance of soil enzymes: soil carbon sequestration and nutrient cycling. In: Shukla G, Varma A, editors. Soil enzymology. Berlin/Heidelberg: Springer-Verlag; p. 43–60.
  • Shi ZH, Yue BJ, Wang L, Fang NF. 2012. Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes. Soil Sci Soc Am J. 77:257–267. doi:10.2136/sssaj2012.0273.
  • Sims JR, Haby VA. 1971. Simplified colorimetric determination of soil organic matter. Soil Sci. 112:137–141. doi:10.1097/00010694-197108000-00007.
  • Singh P, Benbi DK. 2018. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena. 166:171–180. doi:10.1016/j.catena.2018.04.006.
  • Stemmer M. 2004. Multiple-substrate enzyme assays: a useful approach for profiling enzyme activity in soils? Soil Biol Biochem. 36:519–527. doi:10.1016/j.soilbio.2003.11.004.
  • Tuo D, Xu M, Gao G. 2018. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese loess plateau. Sci Total Environ. 633:1032–1040. doi:10.1016/j.scitotenv.2018.03.237.
  • Venter ZS, Jacobs K, Hawkins H. 2016. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia. 59:215–223. doi:10.1016/j.pedobi.2016.04.001.
  • Xiao H, Li Z, Chang X, Huang B, Nie X, Liu C, Liu L, Wang D, Jiang J. 2018. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma. 329:73–81. doi:10.1016/j.geoderma.2018.05.018.
  • Xiaojun N, Jianhui Z, Zhengan S. 2013. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion. PLoS One. 8:e64059. doi:10.1371/journal.pone.0064059.
  • Yao H, He Z, Wilson MJ, Campbell CD. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecol. 40:223–237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.