371
Views
13
CrossRef citations to date
0
Altmetric
Articles

Earthworm community and soil microstructure changes with long-term organic fertilization

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 957-970 | Received 21 Dec 2018, Accepted 14 Jul 2019, Published online: 07 Aug 2019

References

  • [AENOR] Asociación Española de Normalización y Certificación (SP). 2009. Soil quality. Sampling of soil invertebrates. Part I: hand-sorting and formalin extraction of earthworms. Madrid: AENOR, UNE-ISO 23611-1.
  • Adesodun JK, Davidson DA, Hopkins DW. 2005. Micromorphological evidence for changes in soil faunal activity following application of sewage sludge and biocide. Appl Soil Ecol. 29:39–45. doi:10.1016/j.apsoil.2004.09.004.
  • Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo P, Morais MC, Cunha-Queda C. 2015. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manag. 40:44–52. doi:10.1016/j.wasman.2015.01.027.
  • Alvarenga P, Palma P, Mourinha C, Farto M, Dôres J, Patanita M, Cunha-Queda C, Natal-da-Luz T, Renaud M, Sousa J. 2017. Recycling organic wastes to agricultural land as a way to improve its quality: A field study to evaluate benefits and risks. Waste Manag. 61:582–592. doi:10.1016/j.wasman.2017.01.004.
  • Aparicio I, Santos JL, Alonso E. 2009. Limitation of the concentration of organic pollutants in sewage sludge for agricultural purposes: a case study in South Spain. Waste Manag. 29:1747–1753. doi:10.1016/j.wasman.2008.11.003.
  • Asses N, Farhat A, Cherif S, Hamdi M, Bouallagui H. 2018. Comparative study of sewage sludge co-composting with olive mill wastes or green residues: process monitoring and agriculture value of the resulting composts. Process Saf Environ Prot. 114:25–35. doi:10.1016/j.psep.2017.12.006.
  • Bal L. 1970. Morphological investigation in two moder-humus profiles and the role of the soil fauna in their genesis. Geoderma 4:5–36. doi:10.1016/0016-7061(70)90030-3.
  • Baldivieso-Freitas P, Blanco-Moreno JM, Gutiérrez-López M, Peigné J, Pérez-Ferrer A, Trigo-Aza D, Sans FX. 2018. Earthworm abundance response to conservation agriculture practices in organic arable farming under Mediterranean climate. Pedobiologia (Jena). 66:58–64. doi:10.1016/j.pedobi.2017.10.002.
  • Bertrand M, Barot S, Blouin M, Whalen J, de Oliveira T, Roger-Estrade J. 2015. Earthworm services for cropping systems. A review. Agron Sustain Dev. 35:553–567. doi:10.1007/s13593-014-0269-7.
  • Biau A, Santiveri F, Mijangos I, Lloveras J. 2012. The impact of organic and mineral fertilizers on soil quality parameters and the productivity of irrigated maize crops in semiarid regions. Eur J Soil Biol. 53:56–61. doi:10.1016/j.ejsobi.2012.08.008.
  • Birkas M, Bottlik L, Stingli A, Gyuricza C, Jolánkai M. 2010. Effect of soil physical state on the earthworms in Hungary. Appl Environ Soil Sci. 2010:1–7. doi:10.1155/2010/830853.
  • Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE, et al. 2013. A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci. 64:161–182. doi:10.1111/ejss.12025.
  • Bosch-Serra AD, Ortiz C, Yagüe MR, Boixadera J. 2015. Strategies to optimize nitrogen efficiency when fertilizing with pig slurries in dryland agricultural systems. Eur J Agron. 67:27–36. doi:10.1016/j.eja.2015.03.003.
  • Bosch-Serra AD, Yagüe MR, Poch RM, Molner M, Junyent B, Boixadera J. 2017. Aggregate strength in calcareous soil fertilized with pig slurries. Eur J Soil Sci. 68:449–461. doi:10.1111/ejss.12438.
  • Bruneau PMC, Davidson DA, Grieve IC. 2004. An evaluation of image analysis for measuring changes in void space and excremental features on soil thin sections in an upland grassland soil. Geoderma 120:165–175. doi:10.1016/j.geoderma.2003.08.012.
  • Bruneau PMC, Davidson DA, Grieve IC, Young IM, Nunan N. 2005. The effects of soil horizons and faunal excrement on bacterial distribution in an upland grassland soil. FEMS Microbiol Ecol. 52:139–144. doi:10.1016/j.femsec.2004.10.010.
  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, et al. 2018. Soil quality – a critical review. Soil Biol Biochem. 120:105–125. doi:10.1016/j.soilbio.2018.01.030.
  • Charlton A, Sakrabani R, Tyrrel S, Rivas Casado M, McGrath SP, Crooks B, Cooper P, Campbell CD. 2016. Long-term impact of sewage sludge application on soil microbial biomass: an evaluation using meta-analysis. Environ Pollut. 219:1021–1035. doi:10.1016/j.envpol.2016.07.050.
  • Coors A, Edwards M, Lorenz P, Römbke J, Schmelz RM, Topp E, Waszak K, Wilkes G, Lapen DR. 2016. Biosolids applied to agricultural land: influence on structural and functional endpoints of soil fauna on a short- and long-term scale. Sci Total Environ. 562:312–326. doi:10.1016/j.scitotenv.2016.03.226.
  • D’Hose T, Molendijk L, van Vooren L, van Den Berg W, Hoek H, Runia W, van Evert F, Ten Berge H, Spiegel H, Sandèn T, et al. 2018. Responses of soil biota to non-inversion tillage and organic amendments: an analysis on European multiyear field experiments. Pedobiologia (Jena). 66:18–28. doi:10.1016/j.pedobi.2017.12.003.
  • Davidson DA. 2002. Bioturbation in old arable soils: quantitative evidence from soil micromorphology. J Archaeol Sci. 29:1247–1253. doi:10.1006/jasc.2001.0755.
  • Davidson DA, Bruneau PMC, Grieve IC, Wilson CA. 2004. Micromorphological assessment of the effect of liming on faunal excrement in an upland grassland soil. Appl Soil Ecol. 26:169–177. doi:10.1016/j.apsoil.2004.01.006.
  • Davidson DA, Grieve IC. 2006. Relationships between biodiversity and soil structure and function: evidence from laboratory and field experiments. Appl Soil Ecol. 33:176–185. doi:10.1016/j.apsoil.2005.11.002.
  • Diacono M, Montemurto F. 2010. Long-term effects of organic amendments on soil fertility. Agron Sustain Dev. 30:401–422. doi:10.1051/agro/2009040.
  • Domínguez-Haydar Y, Castañeda C, Rodríguez-Ochoa R, Jiménez JJ. 2018. Assessment of soil fauna footprints at a rehabilitated coal mine using micromorphology and near infrared spectroscopy (NIRS). Geoderma 313:135–145. doi:10.1016/j.geoderma.2017.10.032.
  • [EU] European Union. 1986. Council Directive, (86/278/EEC), of 12 June 1986, on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. OJL. 181:6.
  • [EU] European Union. 2018. Eurostat. Data base. Agriculture. [accessed 2019 Jun 1]. https://ec.europa.eu/eurostat/web/agriculture/data/database.
  • Fernández JM, Hernández D, Plaza CA, Polo A. 2007b. Organic matter in degraded agricultural soils amended with composted and thermally-dried sewage sludges. Sci Total Environ. 378:75–80. doi:10.1016/j.scitotenv.2007.01.008.
  • Fernández JM, Plaza C, Hernández D, Polo A. 2007a. Carbon mineralization in an arid soil amended with thermally-dried and composted sewage sludges. Geoderma 137:97–503. doi:10.1016/j.geoderma.2006.10.013.
  • Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ. 2017. The presence of contaminations in sewage sludge – the current situation. J Environ Manage. 203:1126–1136. doi:10.1016/j.jenvman.2017.05.068.
  • Głąb T, Żabiński A, Sadowska U, Gondek K, Kopeć M, Mierzwa-Hersztek M, Tabor S. 2018. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 315:27–35. doi:10.1016/j.geoderma.2017.11.034.
  • Gomez A. 1998. The evaluation of compost quality. Trends Anal Chem. 17:310–314. doi:10.1016/S0165-9936(98)00013-2.
  • Gómez-Muñoz B, Magid J, Jensen LS. 2017. Nitrogen turnover, crop use efficiency and soil fertility in a long-term field experiment amended with different qualities of urban and agricultural waste. Agric Ecosyst Environ. 240:300–313. doi:10.1016/j.agee.2017.01.030.
  • Gupta SC, Wang D. 2007. Water retention in soil. In: Lal R, editor. Encyclopedia of Soil Science. 2nd ed. New York (NY): Taylor and Francis; p. 1864–1869.
  • Kibblewhite M, Ritz K, Swift M. 2008. Soil health in agricultural systems. Philos Trans R Soc Lond B Biol Sci. 363:685–701. doi:10.1098/rstb.2007.2178.
  • Koblenz B, Tischer S, Rücknagel J, Christen O. 2015. Influence of biogas digestate on density, biomass and community composition of earthworms. Ind Crops Prod. 66:206–209. doi:10.1016/j.indcrop.2014.12.024.
  • Kooch Y, Jalilvand H, Bahmanyar MA, Pormajidian MR. 2008. Abundance, biomass and vertical distribution of earthworms in ecosystem units of hornbeam forest. J Biol Sci. 8:1033–1038. doi:10.3923/jbs.2008.1033.1038.
  • Kooistra MJ. 1991. A micromorphological approach to the interactions between soil structure and soil biota. Agric Ecosyst Environ. 34:315–328. doi:10.1016/0167-8809(91)90117-G.
  • Kooistra MJ, Pulleman MM. 2001. Features related to faunal activity. In: Stoops G, Marcelino V, Mees F, editors. Interpretation of micromorphological features of soils and regoliths. Amserdam (NL): Elsevier; p. 397–418.
  • Lamandé M, Hallaire V, Curm P, Pérès G, Cluzeau D. 2003. Changes of pore morphology, infiltration and earthworm community in a loamy soil under different agricultural managements. Catena 54:637–649. doi:10.1016/S0341-8162(03)00114-0.
  • Lee K, Foster R. 1991. Soil fauna and soil structure. Aust J Soil Res. 29:745–775. doi:10.1071/SR9910745.
  • Murchie AK, Blackshaw RP, Gordon AW, Christie P. 2015. Responses of earthworm species to long-term applications of slurry. Appl Soil Ecol. 96:60–67. doi:10.1016/j.apsoil.2015.07.005.
  • Nahmani J, Lavelle P, Lapied E, van Oort F. 2003. Effects of heavy metal soil pollution on earthworm communities in the north of France. Pedobiologia (Jena). 47:663–669.
  • Olympus. 2013. Olympus stream. Analysys software. Version 510_UMA_OlyStream19-Krishna. Münster (DE):Olympus in.
  • Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, Iroh IN, Ezeogu LI. 2017. Composting technology in waste stabilization: on the methods, challenges and future prospects. J Environ Manage. 190:140–157. doi:10.1016/j.jenvman.2016.12.051.
  • Paetsch L, Mueller CW, Rumpel C, Houot S, Kögel-Knabner I. 2016. Urban waste composts enhance OC and N stocks after long-term amendment but do not alter organic matter composition. Agric Ecosyst Environ. 223:211–222. doi:10.1016/j.agee.2016.03.008.
  • Pagliai M. 2003. Changes of pore system following soil compaction. Paper presented at: collage on Soil physics; Mar 3–21;Miramare, Trieste, (IT) [accessed 2019 Jun 1]. http://indico.ictp.it/event/a0261/session/17/contribution/12/material/0/2.pdf.
  • Paoletti MG. 1999. The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ. 74:137–155. doi:10.1016/S0167-8809(99)00034-1.
  • Peigné J, Vian JF, Cannavacciuolo M, Lefevre V, Gautronneau Y, Boizard H. 2013. Assessment of soil structure in the transition layer between topsoil and subsoil using the profile cultural method. Soil Tillage Res. 127:13–25. doi:10.1016/j.still.2012.05.014.
  • Pérès G, Cluzeau D, Hotte H, Delaveau N. 2014. Earthworms. In: ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie), editor. Bioindicators. Biological tools for soil quality assessment. France: ADEME. Tool Worksheet N° 6
  • Pérès G, Vandenbulcke F, Guernion M, Hedde M, Beguiristain T, Douay F, Houot S, Piron D, Richard A, Bispo A, et al. 2011. Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France). Pedobiologia (Jena). 54(Suppl):S77–S87. doi:10.1016/j.pedobi.2011.09.015
  • Piron D, Boizard H, Heddadj D, Pérès G, Hallaire V, Cluzeau D. 2017. Indicators of earthworm bioturbation to improve visual assessment of soil structure. Soil Tillage Res. 173:53–63. doi:10.1016/j.still.2016.10.013.
  • Piron D, Pérès G, Hallaire V, Cluzeau D. 2012. Morphological description of soil structure patterns produced by earthworm bioturbation at the profile scale. Eur J Soil Biol. 50:83–90. doi:10.1016/j.ejsobi.2011.12.006.
  • Ponge JF, Pérès G, Guernion M, Ruiz-Camacho N, Cortet J, Pernin C, Villenave C, Chaussod R, Martin-Laurent F, Bispo A, et al. 2013. The impact of agricultural practices on soil biota: a regional study. Soil Biol Biochem. 67:271–284. doi:10.1016/j.soilbio.2013.08.026.
  • Pulleman MM, Six J, Uyl A, Marinissen JCY, Jongmans AG. 2005. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Appl Soil Ecol. 29:1–15. doi:10.1016/j.apsoil.2004.10.003.
  • Reinecke AJ, Visser FA. 1980. The influence of agricultural land use practices on the population densities of Allolobophora trapezoides and Eisenia rosea (Oligochaeta) in Southern Africa. In Dindal DL, editor. Soil biology as related to land use practices. Washintong (DC). Environmental Protection Agency. p.310–324.
  • Renaud M, Chelinho S, Alvarenga P, Mourinha C, Palma P, Sousa JP, Natal-da-Luz T. 2017. Organic wastes as soil amendments – effects assessment towards soil invertebrates. J Hazard Mater. 330:149–156. doi:10.1016/j.jhazmat.2017.01.052.
  • Rigby H, Clarke BO, Pritchard DL, Meehan B, Beshah F, Smith SR, Porter NA. 2016. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Sci Total Environ. 541:1310–1338. doi:10.1016/j.scitotenv.2015.08.089.
  • Rigueiro-Rodríguez A, Amador-García A, Ferreiro-Domínguez N, Muñoz-Ferreiro N, Santiago-Freijanes JJ, Mosquera-Losada MR. 2018. Proposing policy changes for sewage sludge applications based on zinc within a circular economy perspective. Land Use Policy. 76:839–846. doi:10.1016/j.landusepol.2018.03.025.
  • Rutgers M, Orgiazzi A, Gardi C, Römbke J, Jänsch S, Keith AM, Neilson R, Boag B, Schmidt O, Murchie AK, et al. 2016. Mapping earthworm communities in Europe. Appl Soil Ecol. 97:98–111. doi:10.1016/j.apsoil.2015.08.015.
  • Sánchez M, González JL. 2005. The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour Technol. 96:1117–1123.
  • SAS Institute. 2001. The SAS/TAT system for windows. Release V 8.2. Cary (NC):SAS Inst.
  • Sauzet O, Cammas C, Gilliot JM, Bajard M, Montagne D. 2017. Development of a novel image analysis procedure to quantify biological porosity and illuvial clay in large soil thin sections. Geoderma 292:135–148. doi:10.1016/j.geoderma.2017.01.004.
  • Schon NL, Mackay AD, Gray RA, van Koten C, Dodd MB. 2017. Influence of earthworm abundance and diversity on soil structure and the implications for soil services throughout the season. Pedobiologia (Jena). 62:41–47. doi:10.1016/j.pedobi.2017.05.001.
  • Sharma B, Sarkar A, Singh P, Singh RP. 2017. Agricultural utilization of biosolids: a review on potential effects on soil and plant grown. Waste Manag. 64:117–132. doi:10.1016/j.wasman.2017.03.002.
  • Shepherd G, Stagnari F, Pisante M, Benites J. 2008. Visual soil assessment. Field guides. Rome (IT):Food and Agriculture Organization of the United Nations (FAO). [accessed 2019 Jun 1]. http://www.fao.org/docrep/010/i0007e/i0007e00.htm
  • Singh J. 2018. Role of earthworms in sustainable agriculture. In: Galanakis CM, editor. Sustainable food systems from agriculture to industry. Improving production and processing. United Kingdom (UK): Elsevier; p. 83–122.
  • Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12. Washington (DC): USDA-NRCS, US Gov. Print. Office.
  • Stoops G. 2003. Guidelines for analysis and description of soil and regolith thin sections. Madison (WI): Soil Science Society of America.
  • VandenBygaart AJ, Fox CA, Fallow DJ, Protz R. 2000. Estimating earthworm-influenced soil structure by morphometric image analysis. Soil Sci Soc Am J. 64:982–988. doi:10.2136/sssaj2000.643982x.
  • Yagüe MR, Bosch-Serra ÀD, Boixadera J. 2012. Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: usefulness and constraints. Biosyst Eng. 111:206–216. doi:10.1016/j.biosystemseng.2011.11.013.
  • Yagüe MR, Domingo-Olivé F, Bosch-Serra ÀD, Poch RM, Boixadera J. 2016. Dairy cattle manure effects on soil quality: porosity, earthworms, aggregates and soil organic carbon fractions. Land Degrad Develop. 24:1753–1762. doi:10.1002/ldr.2477.
  • Zaiets O, Poch RM. 2016. Micromorphology of organic matter and humus in Mediterranean mountain soils. Geoderma 272:73–82. doi:10.1016/j.geoderma.2016.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.