327
Views
13
CrossRef citations to date
0
Altmetric
Articles

Dose-dependent effect of compost amendment on soil bacterial community composition and co-occurrence network patterns in soybean agroecosystem

, , , , , , & show all
Pages 1027-1041 | Received 13 Mar 2019, Accepted 30 Jul 2019, Published online: 11 Aug 2019

References

  • Allison SD, Martiny JBH. 2008. Resistance, resilience, and redundancy in microbial communities. P Natl Acad Sci USA. 105:11512–11519. doi:10.1073/pnas.0801925105.
  • Arbuckle JL. 2011. IBM SPSS Amos 20 user’s guide. New York (NY): IBM Corporation.
  • Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J Microbiol Meth. 55:541–555. doi:10.1016/j.mimet.2003.08.009.
  • Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson A. 2016. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 97:188–198. doi:10.1016/j.soilbio.2016.03.017.
  • Bastian M, Heymann S, Jacomy M. 2009. Gephi: an open source software for exploring and manipulating networks. ICWSM. 8:361–362.
  • Bonanomi G, De Filippis F, Cesarano G, La Storia A, Ercolini D, Scala F. 2016. Organic farming induces changes in soil microbiota that affect agro-ecosystem functions. Soil Biol Biochem. 103:327–336. doi:10.1016/j.soilbio.2016.09.005.
  • Buckley DH, Huangyutitham V, Nelson TA, Rumberger A, Thies JE. 2006. Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microb. 72:4522–4531. doi:10.1128/AEM.00149-06.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7:335–336. doi:10.1038/nmeth.f.303.
  • Chang EH, Chung RS, Tsai YH. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci Plant Nutr. 53:132–140. doi:10.1111/j.1747-0765.2007.00122.x.
  • Charbonneau DM, Meddeb-Mouelhi F, Boissinot M, Sirois M, Beauregard M. 2012. Identification of thermophilic bacterial strains producing thermotolerant hydrolytic enzymes from manure compost. Indian J Microbiol. 52:41–47. doi:10.1007/s12088-011-0156-8.
  • Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS. 2012. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol. 64:450–460. doi:10.1007/s00248-012-0025-y.
  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR. 2007. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240. doi:10.1007/s10533-006-9065-z.
  • Cordovez V, Schop S, Hordijk K, de Boulois HD, Coppens F, Hanssen I, Raaijmakers JM, Carrion VJ. 2018. Priming of plant growth promotion by volatiles of root-associated Microbacterium. Appl Environ Microbiol. 84. doi:10.1128/AEM.01865-18.
  • Coyotzi S, Doxey AC, Clark ID, Lapen DR, Cappellen PV, Neufeld JD. 2017. Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environ Microbiol. 19:1189. doi:10.1111/1462-2920.13842.
  • Das S, Jeong ST, Das S, Kim PJ. 2017. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Front Microbiol. 8:1702. doi:10.3389/fmicb.2017.01702.
  • Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. 2012. Molecular ecological network analyses. BMC Bioinf. 13:113. doi:10.1186/1471-2105-13-113.
  • Ding JL, Jiang X, Guan DW, Zhao BS, Ma MC, Zhou BK, Cao FM, Yang XH, Li L, Li J. 2017. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl Soil Ecol. 111:114–122. doi:10.1016/j.apsoil.2016.12.003.
  • Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 10:996–998. doi:10.1038/nmeth.2604.
  • Euanorasetr J, Intra B, Mongkol P, Chankhamhaengdecha S, Tuchinda P, Mori M, Shiomi K, Nihira T, Panbangred W. 2015. Spirotetronate antibiotics with anti-Clostridium activity from Actinomadura sp. World J Microb Biot. 31:391–398. doi:10.1007/s11274-014-1792-z.
  • Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354–1364.
  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6:1007–1017. doi:10.1038/ismej.2011.159.
  • Fuhrman JA. 2009. Microbial community structure and its functional implications. Nature 459:193–199. doi:10.1038/nature08058.
  • Garcı́a-Gil JC, Plaza C, Soler-Rovira P, Polo A. 2000. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem. 32:1907–1913. doi:10.1016/S0038-0717(00)00165-6.
  • Goslee SC, Urban DL. 2007. The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw. 22:1–19. doi:10.18637/jss.v022.i07.
  • Guimera R, Amaral L. 2005. Functional cartography of complex metabolic networks. Nature 433:895–900. doi:10.1038/nature03288.
  • Guo J, Liu W, Zhu C, Luo G, Kong Y, Ling N, Wang M, Dai J, Shen Q, Guo S. 2018. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil 424:335–349. doi:10.1007/s11104-017-3547-8.
  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS. 2010. Significant acidification in major Chinese croplands. Science 327:1008–1010. doi:10.1126/science.1182570.
  • Hallam SJ, Mccutcheon JP. 2015. Microbes don’t play solitaire: how cooperation trumps isolation in the microbial world. Env Microbiol Rep. 7:26–28. doi:10.1111/1758-2229.12248.
  • Hartmann M, Frey B, Mayer J, Mader P, Widmer F. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9:1177–1194. doi:10.1038/ismej.2014.210.
  • Ho A, Di Lonardo DP, Bodelier PLE. 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 93(fix006). doi:10.1093/femsec/fix006.
  • Hooper D, Coughlan J, Mullen MR. 2008. Structural equation modeling: guidelines for determining model fit. Elect J Bus Res Methods 6:53–60.
  • Jorge-Mardomingo I, Soler-Rovira P, Casermeiro MA, de la Cruz MT, Polo A. 2013. Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma 206:40–48. doi:10.1016/j.geoderma.2013.04.025.
  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, et al. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. P Natl Acad Sci USA. 106:3041–3046. doi:10.1073/pnas.0813417106.
  • Killcoyne S, Carter GW, Smith J, Boyle J. 2009. Cytoscape: a community-based framework for network modeling. Methods Mol Biol. 563:219–239. doi:10.1007/978-1-60761-175-2_12.
  • Kuramae EE, Yergeau E, Wong LC, Pijl AS, van Veen JA, Kowalchuk GA. 2012. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol. 79:12–24. doi:10.1111/j.1574-6941.2011.01192.x.
  • Li XZ, Rui JP, Mao YJ, Yannarell A, Mackie R. 2014. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem. 68:392–401. doi:10.1016/j.soilbio.2013.10.017.
  • Ling N, Zhu C, Xue C, Chen H, Duan YH, Peng C, Guo SW, Shen QR. 2016. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem. 99:137–149. doi:10.1016/j.soilbio.2016.05.005.
  • Liu M, Liu J, Chen XF, Jiang CY, Wu M, Li ZP. 2018. Shifts in bacterial and fungal diversity in a paddy soil faced with phosphorus surplus. Biol Fert Soils 54:259–267. doi:10.1007/s00374-017-1258-1.
  • Lv B, Xing M, Yang J, Zhang L. 2015. Pyrosequencing reveals bacterial community differences in composting and vermicomposting on the stabilization of mixed sewage sludge and cattle dung. Appl Microbiol Biot. 99:10703–10712. doi:10.1007/s00253-015-6884-7.
  • Ma XY, Liu M, Li ZP. 2016. Shifts in microbial biomass and community composition in subtropical paddy soils under a gradient of manure amendment. Biol Fert Soils 52:775–787. doi:10.1007/s00374-016-1118-4.
  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6:610–618. doi:10.1038/ismej.2011.139.
  • Miranda ARL, Mendes LW, Rocha SMB, Van Den Brink PJ, Bezerra WM, Melo VMM, Antunes JEL, Araujo ASF. 2018. Responses of soil bacterial community after seventh yearly applications of composted tannery sludge. Geoderma 318:1–8. doi:10.1016/j.geoderma.2017.12.026.
  • Mougi A, Kondoh M. 2012. Diversity of interaction types and ecological community stability. Science. 337:349–351. doi:10.1126/science.1220529.
  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2013. Vegan: community ecology package version 20-6. [accessed 2013 July 11] http://CRANR-projectorg/package=vegan
  • Olesen JM, Bascompte J, Dupont YL, Jordano P. 2007. The modularity of pollination networks. Proc Natl Acad Sci USA. 104:19891–19896. doi:10.1073/pnas.0706375104.
  • Pérez-Piqueres A, Edel-Hermann W, Alabouvette C, Steinberg C. 2006. Response of soil microbial communities to compost amendments. Soil Biol Biochem. 38:460–470. doi:10.1016/j.soilbio.2005.05.025.
  • R Core Team. 2013. R: a language and environment for statistical computing, Vienna, Austria. [accessed 2013 July 11] http://wwwR-projectorg/.
  • Ramirez KS, Craine JM, Fierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biol. 18:1918–1927. doi:10.1111/j.1365-2486.2012.02639.x.
  • Rigby D, Cáceres D. 2001. Organic farming and the sustainability of agricultural systems. Agr Syst. 68:21–40. doi:10.1016/S0308-521X(00)00060-3.
  • Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, et al. 2012. Anticipating critical transitions. Science 338:344–348. doi:10.1126/science.1225244.
  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 75:7537–7541. doi:10.1128/AEM.01541-09.
  • Schmid CAO, Schröder P, Armbruster M, Schloter M. 2018. Organic amendments in a long-term field trial—consequences for the ulk soil bacterial community as revealed by network analysis. Microb Ecol. 76:226. doi:10.1007/s00248-017-1110-z.
  • Sorrenti G, Buriani G, Gaggìa F, Baffoni L, Spinelli F, Gioia Di D, Toselli M. 2017. Soil CO2 emission partitioning, bacterial community profile and gene expression of Nitrosomonas spp and Nitrobacter spp of a sandy soil amended with biochar and compost. Appl Soil Ecol. 112:79–89. doi:10.1016/j.apsoil.2017.01.003.
  • Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M. 2007. Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol. 35:79–93. doi:10.1016/j.apsoil.2006.05.001.
  • Steinberger Y, Zelles L, Bai QY, Mvon L, Munch JC. 1999. Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climatic transect in the Judean Desert. Biol Fertil Soils 28:292–300. doi:10.1007/s003740050496.
  • Suarez C, Ratering S, Kramer I, Schnell S. 2014. Cellvibrio diazotrophicus sp. nov. a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. Int J Syst Evol Micr. 64:481–486. doi:10.1099/ijs.0.054817-0.
  • Suleiman AKA, Gonzatto R, Aita C, Lupatini M, Jacques RJS, Kuramae EE, Antoniolli ZI, Roesch LFW. 2016. Temporal variability of soil microbial communities after application of dicyandiamide-treated swine slurry and mineral fertilizers. Soil Biol Biochem. 97:71–82. doi:10.1016/j.soilbio.2016.03.002.
  • Sun J, Zhang Q, Zhou J, Wei Q. 2014. Pyrosequencing technology reveals the impact of different manure doses on the bacterial community in apple rhizosphere soil. Appl Soil Ecol. 78:28–36. doi:10.1016/j.apsoil.2014.02.004.
  • Sun RB, Dsouza M, Gilbert JA, Guo XS, Wang DZ, Guo ZB, Ni YY, Chu HY. 2016. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ Microbiol. 18:5137–5150. doi:10.1111/1462-2920.13512.
  • Sun RB, Zhang XX, Guo XS, Wang DZ, Chu HY. 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem. 88:9–18. doi:10.1016/j.soilbio.2015.05.007.
  • Tang XY, Placella SA, Dayde F, Bernard L, Robin A, Journet EP, Justes E, Hinsinger P. 2016. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant Soil 407:119–134. doi:10.1007/s11104-016-2949-3.
  • Wang JC, Song Y, Ma TF, Raza W, Li J, Howland JG, Huang QW, Shen QR. 2017. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl Soil Ecol. 112:42–50. doi:10.1016/j.apsoil.2017.01.005.
  • Wang K, Mao H, Li X. 2018. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresource Technol. 249:527–535. doi:10.1016/j.biortech.2017.10.034.
  • Watanabe K, Nagao N, Yamamoto S, Toda T, Kurosawa N. 2007. Thermobacillus composti sp nov, a moderately thermophilic bacterium isolated from a composting reactor. Int J Syst Evol Micr. 57:1473–1477. doi:10.1099/ijs.0.64672-0.
  • Wolinska A, Kuzniar A, Zielenkiewicz U, Banach A, Izak D, Stepniewska Z, Blaszczyk M. 2017. Metagenomic analysis of some potential nitrogen-fixing bacteria in arable soils at different formation processes. Microb Ecol. 73:162–176. doi:10.1007/s00248-016-0837-2.
  • Xu LX, Yi M, Yi HL, Guo EH, Zhang AY. 2018. Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils. World J Microb Biot. 34:8. doi:10.1007/s11274-017-2394-3.
  • Yang W, Guo YT, Wang XC, Chen C, Hu Y, Cheng LJ, Gu SY, Xu XH. 2017. Temporal variations of soil microbial community under compost addition in black soil of Northeast China. Appl Soil Ecol. 121:214–222. doi:10.1016/j.apsoil.2017.10.005.
  • Ye RW, Thomas SM. 2001. Microbial nitrogen cycles: physiology, genomics and applications. Curr Opin Microbiol. 4:307–312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.