333
Views
8
CrossRef citations to date
0
Altmetric
Articles

Soil organic matter and glomalin-related soil protein contents do not explain soil aggregate stability after freeze-thaw cycles at contrasting soil moisture contents

, , , &
Pages 1497-1508 | Received 07 May 2019, Accepted 02 Oct 2019, Published online: 13 Oct 2019

References

  • Abiven S, Menasseri S, Chenu C. 2009. The effects of organic inputs over time on soil aggregate stability-a literature analysis. Soil Biol Biochem. 41:1–12. doi:10.1016/j.soilbio.2008.09.015.
  • Barros THD, Pereira APD, de Souza AJ, Ribeiro NL, Cardoso EJBN, Coelho RD. 2019. Influence of sugarcane genotype and soil moisture level on the arbuscular mycorrhizal fungi community. Sugar Tech. 21:505–513. doi:10.1007/s12355-018-0640-0.
  • Bolliger A, Nalla A, Magid J, de Neergaard A, Nalla AD, Bøg-Hansen TC. 2008. Re-examining the glomalin-purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labelling experiments. Soil Biol Biochem. 40:887–893. doi:10.1016/j.soilbio.2007.10.019.
  • Chaplot V, Cooper M. 2015. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma 243:205–213. doi:10.1016/j.geoderma.2014.12.013.
  • Dagesse DF. 2013. Freezing cycle effects on water stability of soil aggregates. Can J Soil Sci. 93:473–483. doi:10.4141/cjss2012-046.
  • Dagesse DL. 2011. Effect of freeze-drying on soil aggregate stability. Soil Sci Soc Am J. 75:2111–2121. doi:10.2136/sssaj2010.0287.
  • Edwards AC, Scalenghe R, Freppaz M. 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quatern Int. 162–163:172–181. doi:10.1016/j.quaint.2006.10.027.
  • Edwards LM. 2013. The effects of soil freeze-thaw on soil aggregate breakdown and concomitant sediment flow in Prince Edward Island: a review. Can J Soil Sci. 93:459–472. doi:10.4141/cjss2012-059.
  • Erktan A, Cecillon L, Graf F, Roumet C, Legout C, Rey F. 2016. Increase in soil aggregate stability along a mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant Soil 398:121–137. doi:10.1007/s11104-015-2647-6.
  • Fokom R, Adamou S, Teugwa MC, Boyogueno ADB, Nana WL, Ngonkeu MEL, Tchameni NS, Nwaga D, Ndzomo GT, Zollo PHA. 2012. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Till Res. 120:69–75. doi:10.1016/j.still.2011.11.004.
  • Gillespie AW, Farrell RE, Walley FL, Ross ARS, Leinweber P, Eckhardt KU, Regier TZ, Blyth RIR. 2011. Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol Biochem. 43:766–777. doi:10.1016/j.soilbio.2010.12.010.
  • Grogan P, Michelsen A, Ambus P, Jonasson S. 2004. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biol Biochem. 36:641–654. doi:10.1016/j.soilbio.2003.12.007.
  • Hammer EC, Rillig MC. 2011. The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus-salinity increases glomalin content. PLoS One 6:e28426. doi:10.1371/journal.pone.0028426.
  • Han CL, Gu YJ, Kong M, Hu LW, Jia Y, Li FM, Sun J, Siddique KHM. 2018a. Responses of soil microorganisms, carbon and nitrogen to freeze thaw cycles in diverse land-use types. Appl Soil Ecol. 124:211–217. doi:10.1016/j.apsoil.2017.11.012.
  • Han ZM, Deng MW, Yuan AQ, Wang JH, Li H, Ma JC. 2018b. Vertical variation of a black soil’s properties in response to freeze-thaw cycles and its links to shift of microbial community structure. Sci Total Environ. 625:106–113. doi:10.1016/j.scitotenv.2017.12.209.
  • IPCC. 2014. Core Writing Team. In: Pachauri RK, Meyer LA, editors. Climate change 2014: synthesis report, contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva (Switzerland): IPCC; p. 151.
  • John B, Yamashita T, Ludwig B, Flessa H. 2005. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79. doi:10.1016/j.geoderma.2004.12.013.
  • Koide RT, Peoples MS. 2013. Behavior of Bradford-reactive substances is consistent with predictions for glomalin. Appl Soil Ecol. 63:8–14. doi:10.1016/j.apsoil.2012.09.015.
  • Kværnø SH, Øygarden L. 2006. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 67:175–182. doi:10.1016/j.catena.2006.03.011.
  • Li GY, Fan HM. 2014. Effect of freeze-thaw on water stability of aggregates in a black soil of Northeast China. Pedosphere 24:285–290. doi:10.1016/S1002-0160(14)60015-1.
  • Liang JF, An J, Gao JQ, Zhang XY, Yu FH. 2018. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles. PLoS One. 13:e0191999. doi:10.1371/journal.pone.0191999.
  • Lozano E, Chrenkova K, Arcenegui V, Jimenez-Pinilla P, Mataix-Solera J, Mataix-Beneyto J. 2016. Glomalin-related soil protein response to heating temperature: a laboratory approach. Land Degrad Dev. 27:1432–1439. doi:10.1002/ldr.2415.
  • Luna L, Miralles I, Andrenelli MC, Gispert M, Pellegrini S, Vignozzi N, Sole-Benet A. 2016. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid mediterranean region. Catena 143:256–264. doi:10.1016/j.catena.2016.04.013.
  • Mannisto M, Vuosku J, Stark S, Saravesi K, Suokas M, Markkola A, Martz F, Rautio P. 2018. Bacterial and fungal communities in boreal forest soil are insensitive to changes in snow cover conditions. FEMS Microbiol Ecol. 94:9. doi:10.1093/femsec/fiy123.
  • Ouyang W, Lai XH, Li X, Liu HY, Lin CY, Hao FH. 2015. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area. Sci Total Environ. 533:215–222. doi:10.1016/j.scitotenv.2015.06.109.
  • Özgül M, Aksakal E, Günes A, Angin I, Turan M, Öztas T. 2011. Influence of global warming on aggregate stability and hydraulic conductivity under highland soil order in Turkey. Soil Sci. 176:559–566. doi:10.1097/SS.0b013e3182288470.
  • Oztas T, Fayetorbay F. 2003. Effect of freezing and thawing processes on soil aggregate stability. Catena 52:1–8. doi:10.1016/S0341-8162(02)00177-7.
  • Pohl M, Graf F, Buttler A, Rixen C. 2012. The relationship between plant species richness and soil aggregate stability can depend on disturbance. Plant Soil 355:87–102. doi:10.1007/s11104-011-1083-5.
  • Ren JS, Song CC, Hou AX, Song YY, Zhu XY, Cagle GA. 2018. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci Total Environ. 625:782–791. doi:10.1016/j.scitotenv.2017.12.309.
  • Rillig MC, Steinberg PD. 2002. Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification? Soil Biol Biochem. 34:1371–1374. doi:10.1016/S0038-0717(02)00060-3.
  • Rosier CL, Hoye AT, Rillig MC. 2006. Glomalin-related soil protein: assessment of current detection and quantification tools. Soil Biol Biochem. 38:2205–2211. doi:10.1016/j.soilbio.2006.01.021.
  • Schadt CW, Martin AP, Lipson DA, Schmidt SK. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361. doi:10.1126/science.1086940.
  • Schindler FV, Mercer EJ, Rice JA. 2007. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem. 39:320–329. doi:10.1016/j.soilbio.2006.08.017.
  • Shi P, Zhang Y, Zhang Y, Yu Y, Li P, Li ZB, Xiao L, Xu GC, Zhu TT. 2019. Land-use types and slope topography affect the soil labile carbon fractions in the Loess hilly-gully area of Shaanxi, China. Arch Agron Soil Sci. 1–13. doi:10.1080/03650340.2019.1630824
  • Shukla A, Kumar A, Jha A, Salunkhe O, Vyas D. 2013. Soil moisture levels affect mycorrhization during early stages of development of agroforestry plants. Biol Fertil Soils 49:545–554. doi:10.1007/s00374-012-0744-8.
  • Sing AK, Rai A, Sing N. 2016. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain. Geoderma277:41–50. doi:10.1016/j.geoderma.2016.05.004.
  • Singh AK, Rai A, Pandey V, Singh N. 2017. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics. J Environ Manage. 192:142–149. doi:10.1016/j.jenvman.2017.01.041.
  • Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79:7–31. doi:10.1016/j.still.2004.03.008.
  • Skvortsova EB, Shein EV, Abrosimov KN, Romanenko KA, Yudina AV, Klyueva VV, Khaidapova DD, Rogov VV. 2018. The impact of multiple freeze-thaw cycles on the microstructure of aggregates from a soddy-podzolic soil: a microtomographic analysis. Eurasian Soil Sci. 51:190–198. doi:10.1134/S1064229318020102.
  • Song Y, Zou YC, Wang GP, Yu XF. 2017a. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biol Biochem. 109:35–49. doi:10.1016/j.soilbio.2017.01.020.
  • Song Y, Zou YC, Wang GP, Yu XF. 2017b. Stimulation of nitrogen turnover due to nutrients release from aggregates affected by freeze-thaw in wetland soils. Phys Chem Earth. 97:3–11. doi:10.1016/j.pce.2016.12.005.
  • Spohn M, Giani L. 2010. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils. Soil Biol Biochem. 42:1505–1511. doi:10.1016/j.soilbio.2010.05.015.
  • Sun LP, Jing H, Wang GL, Liu GB. 2018. Nitrogen addition increases the contents of glomalin-related soil protein and soil organic carbon but retains aggregate stability in a Pinus tabulaeformis forest. Peer J. 6:e5039. doi:10.7717/peerj.5039.
  • Sun XF, Su YY, Zhang Y, Wu MY, Zhang Z, Pei KQ, Sun LF, Wan SQ, Liang Y. 2013. Diversity of arbuscular mycorrhizal fungal spore communities and its relations to plants under increased temperature and precipitation in a natural grassland. Chin Sci Bull. 58:4109–4119. doi:10.1007/s11434-013-5961-5.
  • Tang J, Liang S, Li ZY, Zhang H, Lou Y, Wang JJ. 2016. Effect of freeze-thaw cycles on carbon stocks of saline-alkali paddy soil. Arch Agron Soil Sci. 62:1640–1653. doi:10.1080/03650340.2016.1159301.
  • Vasava HB, Gupta A, Arora R, Das BS. 2019. Assessment of soil texture from spectral reflectance data of bulk soil samples and their dry-sieved aggregate size fractions. Geoderma 337:914–926. doi:10.1016/j.geoderma.2018.11.004.
  • Wang EH, Cruse RM, Chen X, Daigh A. 2012. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Can J Soil Sci. 92:529–536. doi:10.4141/cjss2010-044.
  • Wang L, Shi ZH, Wu GL, Fang NF. 2014. Freeze/thaw and soil moisture effects on wind erosion. Geomorphology 207:141–148. doi:10.1016/j.geomorph.2013.10.032.
  • Wang T, Li P, Li ZB, Hou JM, Xiao L, Ren ZP, Xu GC, Yu KX, Su YY. 2019. The effects of freeze-thaw process on soil water migration in dam and slope farmland on the Loess Plateau, China. Sci Total Environ. 666:721–730. doi:10.1016/j.scitotenv.2019.02.284.
  • Wilson H, Johnson BR, Bohannan B, Pfeifer-Meister L, Mueller R, Bridgham SD. 2016. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a mediterranean climate gradient. Peer J. 4:e2083. doi:10.7717/peerj.2083.
  • Wu Q-S, Li Y, Zou Y-N, He X-H. 2015. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 25:121–130. doi:10.1007/s00572-014-0594-3.
  • Xiao L, Liu G-B, Zhang J-Y, Xue S. 2016. Long-term effects of vegetational restoration on soil microbial communities on the Loess Plateau of China. Restor Ecol. 24:794–804. doi:10.1111/rec.2016.24.issue-6.
  • Xiao L, Zhang Y, Li P, Xu GC, Shi P, Zhang Y. 2019. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma 334:1–8. doi:10.1016/j.geoderma.2018.07.043.
  • Xie HT, Li JW, Zhang B, Wang LF, Wang JK, He HB, Zhang XD. 2015. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates. Sci Rep. 5:14687. doi:10.1038/srep14687.
  • Zhang SX, Li Q, Zhang XP, Wei K, Chen LJ, Liang WJ. 2012. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res. 124:196–202. doi:10.1016/j.still.2012.06.007.
  • Zhang X, Sun SF. 2011. The impact of soil freezing/thawing processes on water and energy balances. Adv Atmos Sci. 28:169–177. doi:10.1007/s00376-010-9206-0.
  • Zhang XK, Wu X, Zhang SX, Xing YH, Wang R, Liang WJ. 2014. Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena 123:188–194. doi:10.1016/j.catena.2014.08.011.
  • Zhang Y, Li P, Liu XJ, Xiao L, Shi P, Zhao BH. 2019. Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma 351:188–196. doi:10.1016/j.geoderma.2019.05.037.
  • Zhang Y-C, Wang P, Wu Q-H, Zou Y-N, Bao Q, Wu Q-S. 2017. Arbuscular mycorrhizas improve plant growth and soil structure in trifoliate orange under salt stress. Arch Agron Soil Sci. 63:491–500. doi:10.1080/03650340.2016.1222609.
  • Zhang Z, Ma W, Feng WJ, Xiao DH, Hou X. 2016. Reconstruction of soil particle composition during freeze-thaw cycling: a review. Pedosphere. 26:167–179. doi:10.1016/S1002-0160(15)60033-9.
  • Zhao BH, Li ZB, Li P, Xu GC, Gao HD, Cheng YT, Chang EH, Yuan SL, Zhang Y, Feng ZH. 2017. Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma. 296:10–17. doi:10.1016/j.geoderma.2017.02.010.
  • Zhong ZL, Wang WJ, Wang Q, Wu Y, Wang HM, Pei ZX. 2017. Glomalin amount and compositional variation, and their associations with soil properties in farmland, northeastern China. J Plant Nutr Soil Sci. 180:563–575. doi:10.1002/jpln.v180.5.
  • Zhu G-Y, Shangguan Z-P, Deng L. 2017. Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. Catena. 149:253–260. doi:10.1016/j.catena.2016.10.004.
  • Zou Y-N, Srivastava AK, Wu Q-S, Huang Y-M. 2014. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerine) during soil water deficit. Arch Agron Soil Sci. 60:1103–1114. doi:10.1080/03650340.2013.867950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.