161
Views
2
CrossRef citations to date
0
Altmetric
Articles

Cry1Ab/Ac proteins released from subspecies of Bacillus thuringiensis (Bt) and transgenic Bt-rice in different paddy soils

, , &
Pages 1546-1555 | Received 09 Jul 2018, Accepted 14 Oct 2019, Published online: 13 Nov 2019

References

  • Badran AH, Guzov VM, Huai Q, Kemp MM, Vishwanath P, Kain W, Nance AM, Evdokimov A, Moshiri F, Turner KH, et al. 2016. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature 533:58. doi:10.1038/nature17938.
  • Baumgarte S, Tebbe CC. 2005. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol. 14:2539–2551. doi:10.1111/j.1365-294X.2005.02592.x.
  • Bravo A. 2018. Biodiversity of Cry toxins produced by Bacillus thuringiensis and evolution of resistance to these toxins in different insect pests. Toxicon. 149:98. doi:10.1016/j.toxicon.2018.02.010.
  • Chen R, Wang Y, Zhu Z, Lan QK, Zhao X, Wang HY, Guo YZ, Wang QY. 2014. Development of the one-step visual loop-mediated isothermal amplification assay for genetically modified rice event TT51-1. Food Sci Technol Res. 20:71–77. doi:10.3136/fstr.20.71.
  • Clark BW, Phillips TA, Coats JR. 2005. Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review. J Agr Food Chem. 53:4643–4653. doi:10.1021/jf040442k.
  • Crecchio C, Stotzky G. 1998. Insecticidal activity and biodegradation of the toxin from bacillus thuringiensis subsp. kurstaki bound to humic acids from soil. Soil Biol Biochem. 30:463–470. doi:10.1016/S0038-0717(97)00147-8.
  • Crecchio C, Stotzky G. 2001. Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound on complexes of montmorillonite-humic acids-Al hydroxypolymers. Soil Biol Biochem. 33:573–581. doi:10.1016/S0038-0717(00)00199-1.
  • Doerr S, Shakesby R, Walsh R. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev. 51:33–65. doi:10.1016/S0012-8252(00)00011-8.
  • Dohrmann AB, Kuting M, Junemann S, Jaenicke S, Schluter A, Tebbe CC. 2013. Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. Isme J. 7:37–49. doi:10.1038/ismej.2012.77.
  • Douville M, Gagne F, Masson L, McKay J, Blaise C. 2005. Tracking the source of Bacillus thuringiensis Cry1Ab endotoxin in the environment. Biochem Syst Ecol. 33:219–232. doi:10.1016/j.bse.2004.08.001.
  • Eickhorst T, Tippkötter R. 2009. Management-induced structural dynamics in paddy soils of south east China simulated in microcosms. Soil Tillage Res. 102:168–178. doi:10.1016/j.still.2008.07.007.
  • FAO (Food and Agriculture Organization of the United Nations). 2006. Guidelines for soil description. 4th. Rome: FAO.
  • Fließbach A, Messmer M, Nietlispach B, Infante V, Mäder P. 2012. Effects of conventionally bred and Bacillus thuringiensis (Bt) maize varieties on soil microbial biomass and activity. Biol Fertil Soils 48:315–324. doi:10.1007/s00374-011-0625-6.
  • Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Andersen MN, Cortet J, Messean A, Sausse C, Lacroix B, et al. 2005. A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis CryIAb toxin. Plant Soil 275:135–146. doi:10.1007/s11104-005-1093-2.
  • Griffiths NA, Tank JL, Royer TV, Rosi EJ, Shogren AJ, Frauendorf TC, Whiles MR. 2017. Occurrence, leaching, and degradation of Cry1Ab protein from transgenic maize detritus in agricultural streams. Sci Total Environ. 592:97–105. doi:10.1016/j.scitotenv.2017.03.065.
  • Helassa N, M’Charek A, Quiquampoix H, Noinville S, Dejardin P, Frutos R, Staunton S. 2011. Effects of physicochemical interactions and microbial activity on the persistence of Cry1Aa Bt (Bacillus thuringiensis) toxin in soil. Soil Biol Biochem. 43:1089–1097. doi:10.1016/j.soilbio.2011.01.030.
  • Hilbeck A, Bigler F. 1999. Long-term questions related to agroecological effects of transgenic Bt-crops. In: Ammann K, Jacot Y, Simonsen V, Kjellson G, editors. Methods for risk assement of transgenic plants. Basel (Switzerland): Birkhäuser Verlag; p. 77–81.
  • Hofte H, Whiteley HR. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 53:242–255.
  • Hopkins DW, Gregorich EG. 2003. Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. Eur J Soil Sci. 54:793–800. doi:10.1046/j.1351-0754.2003.0563.x.
  • Icoz I, Stotzky G. 2008. Cry3Bb1 protein from Bacillus thuringiensis in root exudates and biomass of transgenic corn does not persist in soil. Transgenic Res. 17:609–620. doi:10.1007/s11248-007-9133-8.
  • Ingber DA, Mason CE, Flexner L. 2018. Cry1 Bt susceptibilities of fall armyworm (Lepidoptera: Noctuidae) host strains. J Econ Entomol. 111:361–368. doi:10.1093/jee/tox311.
  • IUSS Working Group WRB. 2006. World reference base for soil resources. Rome: FAO. World Soil Resources Reports No 103.
  • James C. 2016. Global status of commercialized biotech/GM crops: 2016. Ithaca (NY). The International Sevice for the Acquisiton of Agri-biotech Applicaitons Brief No. 52
  • Kramarz PE, De Vaufleury A, Carey M. 2007. Studying the effect of exposure of the snail Helix aspersa to the purified Bt toxin, Cry1Ab. Appl Soil Ecol. 37:169–172. doi:10.1016/j.apsoil.2007.06.006.
  • Lesins V, Ruckenstein E. 1988. Patch controlled attractive electrostatic interactions between similarly charged proteins and adsorbents. Colloid Polym Sci. 266:1187–1190. doi:10.1007/BF01414409.
  • Little NS, Luttrell RG, Allen KC, Perera OP, Parys KA. 2017. Effectiveness of microbial and chemical insecticides for supplemental control of bollworm on Bt and non-Bt cottons. J Econ Entomol. 110:1039–1051. doi:10.1093/jee/tow323.
  • Liu L, Wu L, Eickhorst T. 2018. Accumulation of Cry1Ab/Ac proteins released from transgenic Bt-rice in the rhizosphere of a paddy soil. Rhizosphere 6:39–46. doi:10.1016/j.rhisph.2018.02.002.
  • Losey JE, Rayor LS, Carter ME. 1999. Transgenic pollen harms monarch larvae. Nature 399:214. doi:10.1038/20338.
  • Melo AL, Soccol VT, Soccol CR. 2016. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit Rev Biotechnol. 36:317–326. doi:10.3109/07388551.2014.960793.
  • Miethling-Graff R, Dockhorn S, Tebbe CC. 2010. Release of the recombinant Cry3Bb1 protein of Bt maize MON88017 into field soil and detection of effects on the diversity of rhizosphere bacteria. Eur J Soil Biol. 46:41–48. doi:10.1016/j.ejsobi.2009.10.003.
  • Milner RJ. 1994. History of Bacillus thuringiensis. Agr Ecosyst Environ. 49:9–13. doi:10.1016/0167-8809(94)90014-0.
  • Mohan M, Gujar GT. 2001. Toxicity of Bacillus thuringiensis strains and commercial formulations to the diamondback moth, Plutella xylostella (L.). Crop Prot. 20:311–316. doi:10.1016/S0261-2194(00)00157-5.
  • Neher DA, Muthumbi AW, Dively GP. 2014. Impact of coleopteran-active Bt corn on non-target nematode communities in soil and decomposing corn roots. Soil Biol Biochem. 76:127–135. doi:10.1016/j.soilbio.2014.05.019.
  • Pagel-Wieder S, Niemeyer J, Fischer WR, Gessler F. 2007. Effects of physical and chemical properties of soils on adsorption of the insecticidal protein (Cry1Ab) from Bacillus thuringiensis at Cry1Ab protein concentrations relevant for experimental field sites. Soil Biol Biochem. 39:3034–3042. doi:10.1016/j.soilbio.2007.06.015.
  • Quiquampoix H. 1987a. A stepwise approach to the understanding of extracellular enzyme activity in soil I. Effect of electrostatic interactions on the conformation of a beta-D-glucosidase adsorbed on different mineral surfaces. Biochimie. 69:753–763. doi:10.1016/0300-9084(87)90196-9.
  • Quiquampoix H. 1987b. A stepwise approach to the understanding of extracellular enzyme activity in soil II. Competitive effects on the adsorption of a beta-D-glucosidase in mixed mineral or organo mineral systems. Biochimie. 69:765–771. doi:10.1016/0300-9084(87)90197-0.
  • Quiquampoix H, Burns RG. 2007. Interactions between proteins and soil mineral surfaces. Environmental and health consequences. Elements 3:401–406. doi:10.2113/GSELEMENTS.3.6.401.
  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Tettelin H, Fouts DE, Eisen JA, Gill SR, et al. 2003. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86. doi:10.1038/nature01586.
  • Rui YK, Yi GX, Zhao J, Wang BM, Li ZH, Zhai ZX, He ZP, Li QX. 2005. Changes of Bt toxin in the rhizosphere of transgenic Bt cotton and its influence on soil functional bacteria. World J Microb Biot. 21:1279–1284. doi:10.1007/s11274-005-2303-z.
  • Sander M, Madliger M, Schwarzenbach RP. 2010. Adsorption of transgenic insecticidal Cry1Ab protein to SiO2. 1. Forces driving adsorption. Environ Sci Technol. 44:8870–8876. doi:10.1021/es103008s.
  • Saxena D, Flores S, Stotzky G. 1999. Insecticidal toxin in root exudates from Bt corn. Nature 402:480. doi:10.1038/44997.
  • Saxena D, Flores S, Stotzky G. 2002. Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biol Biochem. 34:133–137. doi:10.1016/S0038-0717(01)00161-4.
  • Saxena D, Stotzky G. 2001. Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem. 33:1225–1230. doi:10.1016/S0038-0717(01)00027-X.
  • Saxena D, Stotzky G. 2002. Bt toxin is not taken up from soil or hydroponic culture by corn, carrot, radish, or turnip. Plant Soil 239:165–172. doi:10.1023/A:1015057509357.
  • Stotzky G. 2000. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA Bound on clays and humic acids. J Environ Qual. 29:691–705. doi:10.2134/jeq2000.00472425002900030003x.
  • Tapp H, Stotzky G. 1998. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol Biochem. 30:471–476. doi:10.1016/S0038-0717(97)00148-X.
  • Tian JC, Wang XP, Long LP, Romeis J, Naranjo SE, Hellmich RL, Wang P, Earle ED, Shelton AM. 2013. Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris. PLoS One 8:e60125. doi:10.1371/journal.pone.0060125.
  • Tu JM, Zhang GA, Datta K, Xu CG, He YQ, Zhang QF, Khush GS, Datta SK. 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin. Nat Biotechnol. 18:1101–1104. doi:10.1038/80310.
  • Van Den Berg J, Hilbeck A, Bohn T. 2013. Pest resistance to Cry1Ab Bt maize: field resistance, contributing factors and lessons from South Africa. Crop Prot. 54:154–160. doi:10.1016/j.cropro.2013.08.010.
  • Wang HY, Ye QF, Wang W, Wu LC, Wu WX. 2006. Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil. Environ Pollut. 143:449–455. doi:10.1016/j.envpol.2005.12.006.
  • Wang YM, Hu HW, Huang JC, Li JH, Liu B, Zhang GA. 2013. Determination of the movement and persistence of Cry1Ab/1Ac protein released from Bt transgenic rice under field and hydroponic conditions. Soil Biol Biochem. 58:107–114. doi:10.1016/j.soilbio.2012.11.007.
  • Wu YH, Yang LT, Cao YL, Song GW, Shen P, Zhang DB, Wu G. 2013. Collaborative validation of an event-specific quantitative real-time PCR method for genetically modified rice event TT51-1 detection. J Agr Food Chem. 61:5953–5960. doi:10.1021/jf401339k.
  • Xue K, Diaz BR, Thies JE. 2014. Stability of Cry3Bb1 protein in soils and its degradation in transgenic corn residues. Soil Biol Biochem. 76:119–126. doi:10.1016/j.soilbio.2014.04.031.
  • Yoshida S. 1976. Routine procedure for growing rice plants in culture solutions. In: Yoshida S, Forno DA, Cock JH, Gomez K, Eds., Laboratory Manual for Physiological Studies of Rice, International Rice Research Institute, Los Baños, 61–66
  • Zwahlen C, Hilbeck A, Gugerli P, Nentwig W. 2003. Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol. 12:765–775. doi:10.1046/j.1365-294x.2003.01767.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.