174
Views
0
CrossRef citations to date
0
Altmetric
Articles

An optimized artificial intelligence approach and sensitivity analysis for predicting the biological yield of grass pea (Lathyrus sativus L.)

, , &
Pages 1909-1924 | Received 09 May 2019, Accepted 02 Dec 2019, Published online: 12 Dec 2019

References

  • Abdipour M, Ebrahimi M, Izadi-Darbandi A, Mastrangelo AM, Najafian G, Arshad Y. 2015. Variability and association grain weight with grain size (and shape) and grain quality, and stepwise regression analysis on thousand grain weight in Iranian Durum wheat landraces. In Biol Forum. 7(2):944–954. Research Trend.
  • Abdipour M, Ebrahimi M, Izadi-Darbandi A, Mastrangelo AM, Najafian G, Arshad Y, Mirniyam G. 2016. Association between grain size and shape and quality traits, and path analysis of thousand grain weight in Iranian bread wheat landraces from different geographic regions. Not Bot Horti Agrobot. 44(1):228–236. doi:10.15835/nbha44110256.
  • Abdipour M, Ramazani SHR, Younessi‐Hmazekhanlu M, Niazian M. 2018. Modeling oil content of sesame (Sesamum indicum L.) using artificial neural network and multiple linear regression approaches. J Am Oil Chem Soc. 95(3):283–297. doi:10.1002/aocs.2018.95.issue-3.
  • Abdipour M, Younessi‐Hmazekhanlu M, Ramazani SHR. 2019. Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Ind Crop Prod. 127:185–194. doi:10.1016/j.indcrop.2018.10.050.
  • Ahmadi J, Vaezi B, Pour-Aboughadareh A. 2015. Assessment of heritability and relationships among agronomic characters in grass pea (Lathyrus sativus L.) under rainfed conditions. Biharean Biol. 9(1):29–34.
  • Ahmadi SH, Sepaskhah AR, Andersen MN, Plauborg F, Jensen CR, Hansen S. 2014. Modeling root length density of field grown potatoes under different irrigation strategies and soil textures using artificial neural networks. Field Crop Res. 162:99–107. doi:10.1016/j.fcr.2013.12.008.
  • Alvarez R. 2009. Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. Eur J Agron. 30(2):70–77. doi:10.1016/j.eja.2008.07.005.
  • Azadeh A, Ghaderi S, Sohrabkhani S. 2008. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energ Convers Manage. 49(8):2272–2278. doi:10.1016/j.enconman.2008.01.035.
  • Bai S-B, Wang J, G-N L, Zhou P-G, Hou -S-S, Xu S-N. 2010. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area, China. Geomorphology. 115(1–2):23–31. doi:10.1016/j.geomorph.2009.09.025.
  • Baldinger L, Hagmüller W, Minihuber U, Zollitsch W. 2014. Grass pea seeds as protein-rich feed for weaned piglets. Building Organic Bridges. 1:21–24.
  • Boukecha D, Laouar M, Mekliche-Hanifi L, Harek D. 2018. Drought tolerance in some populations of grass pea (Lathyrus sativus L.). Legume Res. 41(1):1-8.
  • Colwell JD. 1994. Estimating fertilizer requirements: a quantitative approach. Wallingford: CAB International, Oxon (EUA); p. 262.
  • Darlington RB, Hayes AF. 2016. Regression analysis and linear models: concepts, applications, and implementation. New York (NY): Guilford Publications; p. 661.
  • Dixit GP, Parihar AK, Bohra A, Singh NP. 2016. Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J. 4(5):407–416. doi:10.1016/j.cj.2016.06.008.
  • Elhami B, Khanali M, Akram A. 2017. Combined application of artificial neural networks and life cycle assessment in lentil farming in Iran. Inf Process Agric. 4(1):18–32.
  • Emamgholizadeh S, Parsaeian M, Baradaran M. 2015. Seed yield prediction of sesame using artificial neural network. Eur J Agron. 68:89–96. doi:10.1016/j.eja.2015.04.010.
  • Emmrich P 2017. Genetic improvement of grass pea (Lathyrus sativus) for low β-L-ODAP content [doctoral dissertation]. University of East Anglia..p. 293.
  • Eskelinen J. 2017. Comparison of variable selection techniques for data envelopment analysis in a retail bank. Eur J Oper Res. 259(2):778–788. doi:10.1016/j.ejor.2016.11.009.
  • Farjam A, Omid M, Akram A, Fazel Niari Z. 2014. A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. J Agr Sci Tech-Iran. 16(4):767–778.
  • Fernando TMKG, Maier HR, Dandy GC, May RJ 2005 December. Efficient selection of inputs for artificial neural network models. Proceeding of MODSIM 2005 International Congress on Modelling and Simulation: Modelling and Simulation Society of Australia and New Zealand. Perth, Australia; p. 1806–1812.
  • Gholipoor M, Rohani A, Torani S. 2013. Optimization of traits to increasing barley grain yield using an artificial neural network. Int J Plant Prod. 7(1):1–17.
  • Ghosh A, Khan SA. 2018. Determination of optimum sowing time of grass pea based on yield variation as affected by varied dates of sowing in New Alluvial Zone of West Bengal. Int J Agr Environ Biotechnol. 11(1):11–15.
  • Hagan MT, Demuth HB, Jesús OD. 2002. An introduction to the use of neural networks in control systems. Int J Robust Nonlin. 12(11):959–985. doi:10.1002/rnc.727.
  • Haghighi AR, Moghaddam M, Valizadeh M, Javanshir A. 2006. Path analysis of yield and related characteristics for grass pea Lathyrus sativus) landraces under rainfed and irrigated conditions. Can J Plant Sci. 86(5):1420.
  • Heidari M, Omid M, Akram A. 2011. Application of artificial neural network for modeling benefit to cost ratio of broiler farms in tropical regions of Iran. Res J Appl Sci Eng Tech. 3(6):546–552.
  • Heo J-S, Kim D-S. 2004. A new method of ozone forecasting using fuzzy expert and neural network systems. Sci Total Environ. 325(1–3):221–237. doi:10.1016/j.scitotenv.2003.11.009.
  • Hosmer DW Jr, Lemeshow S, Sturdivant RX. 2013. Applied logistic regression. New Jersy (NJ): John Wiley & Sons. Vol. 398; p. 528.
  • Huang J, Wang X, Li X, Tian H, Pan Z. 2013. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS One. 8(8):e70816. doi:10.1371/journal.pone.0070816.
  • Khairunniza-Bejo S, Mustaffha S, Ismail WIW. 2014. Application of artificial neural network in predicting crop yield: a review. J Food Sci Eng. 4(1):1–9.
  • Kong H, Palta J, Siddique K, Stefanova K, Xiong YC, Turner N. 2015. Photosynthesis is reduced, and seeds fail to set and fill at similar soil water contents in grass pea (Lathyrus sativus L.) subjected to terminal drought. J Agron Crop Sci. 201(4):241–252. doi:10.1111/jac.12102.
  • Kour J, Agarwal N. 2016. Correlation and path coefficient analysis of yield components in advanced lines of grass pea (Lathyrus sativus L.). Int J Bio-Resour Stress Manage. 7:682–686.
  • Lee A, Kim SE, Suh K-D. 2016. An easy way to use artificial neural network model for calculating stability number of rock armors. Ocean Eng. 127:349–356. doi:10.1016/j.oceaneng.2016.10.013.
  • Lee C-Y, Tsai T-L. 2019. Data science framework for variable selection, metrology prediction, and process control in TFT-LCD manufacturing. Robot Cim-Int Manuf. 55:76–87. doi:10.1016/j.rcim.2018.07.013.
  • Lenters V, Vermeulen R, Portengen L. 2018. Performance of variable selection methods for assessing the health effects of correlated exposures in case–control studies. Occup Environ Med. 75(7):522–529. doi:10.1136/oemed-2016-104231.
  • Madić MJ, Radovanović MR. 2011. Optimal selection of ANN training and architectural parameters using Taguchi method: a case study. FME Trans. 39(2):79–86.
  • Mansouri A, Fadavi A, Mortazavian SMM. 2016. An artificial intelligence approach for modeling volume and fresh weight of callus–A case study of cumin (Cuminum cyminum L.). J Theor Biol. 397:199–205. doi:10.1016/j.jtbi.2016.03.009.
  • Mansourian S, Darbandi EI, Mohassel MHR, Rastgoo M, Kanouni H. 2017. Comparison of artificial neural networks and logistic regression as potential methods for predicting weed populations on dryland chickpea and winter wheat fields of Kurdistan province, Iran. Crop Prot. 93:43–51. doi:10.1016/j.cropro.2016.11.015.
  • Mathworks I. 2018. MATLAB and statistics toolbox release 2018a. Natick, Massachusetts, USA: The MathWorks Inc.
  • McCulloch WS, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull Math Bioph. 5(4):115–133. doi:10.1007/BF02478259.
  • Moradi G, Dehghani S, Khosravian F, Arjmandzadeh A. 2013. The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield. Renew Energ. 50:915–920. doi:10.1016/j.renene.2012.08.070.
  • Niazian M, Sadat-Noori SA, Abdipour M. 2018a. Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Ind Crop Prod. 117:224–234. doi:10.1016/j.indcrop.2018.03.013.
  • Niazian M, Sadat-Noori SA, Abdipour M, Tohidfar M, Mortazavian SMM. 2018b. Image processing and artificial neural network-based models to measure and predict physical properties of embryogenic callus and number of somatic embryos in Ajowan (Trachyspermum ammi L.) sprague). In Vitro Cell Dev. Pl.54(1):54–68. doi:10.1007/s11627-017-9877-7.
  • Parihar A, Dixit G, Singh D. 2013. Multivariate analysis of various agronomic traits in grasspea (Lathyrus spp) germplasm. Indian J Agr Scis. 83(5):570–575.
  • Parimala K, Mathur R. 2006. Yield component analysis through multiple regression analysis in sesame. Int J Agric Sci. 2(2):338–340.
  • Sabzalian MR, Khashei M, Ghaderian M. 2014. Artificial and hybrid fuzzy linear neural network-based estimation of seed oil content of safflower. J Am Oil Chem Soc. 91(12):2091–2099. doi:10.1007/s11746-014-2547-6.
  • Safa M, Nejat M, Nuthall PL, Greig BJ. 2016. Predicting CO-emissions from farm inputs in wheat production using artificial neural networks and linear regression models-Case study in Canterbury, New Zealand. J Agric Sci Tech. 7(9):268–274.
  • Samarasinghe S. 2016. Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. New York (NY): CRC Press; p. 570.
  • SAS Institute. 2017. Base SAS 9.4 procedures guide: statistical procedures. Bucharest Romania: SAS Institute Inc.
  • Sayar MS 2014. Determining effect of seed yield components on seed yield by using path coefficient and correlation analysis in grass pea genotypes (Lathyrus sativus L.). Turkey 5th seed congress with international participation; 19–23 October 2014; Diyarbakir: Abstracts Book. p. 414.
  • Seuret M, Alberti M, Liwicki M, Ingold R. 2017. Pca-initialized deep neural networks applied to document image analysis. Document Analysis and Recognition (ICDAR). 2017. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). Kyoto, Japan: IEEE.1:877-882.
  • Sharma MJ, Yu SJ. 2015. Stepwise regression data envelopment analysis for variable reduction. Appl Math Comput. 253:126–134.
  • Singh KP, Singh BK, Gaur MK. 2019. Multi-variable analysis and optimization of electrical discharge machining process using a PCA-ANN based approach. Tr Opt-Elec Opt Commun. 6(3):39–45.
  • Singh M, Upadhyaya HD, Bisht IS. 2013. Genetic and genomic resources of grain legume improvement. Newnes. London: Elsevier Inc; p.305.
  • Singh T, Kanchan R, Verma A, Singh S. 2003. An intelligent approach for prediction of triaxial properties using unconfined uniaxial strength. Min Eng J. 5(4):12–16.
  • Suzuki K. 2011. Review of input variable selection methods for artificial neural networks. Artif Neural Networks Methodol Adv Biomed Appl, 10.p.16004.
  • Talukdar D. 2009. Recent progress on genetic analysis of novel mutants and aneuploid research in grass pea (Lathyrus sativus L.). Afr J Agr Res. 4(11):1549–1559.
  • Thompson ML, Reynolds J, Cox LH, Guttorp P, Sampson PD. 2001. A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmos Environ. 35(3):617–630. doi:10.1016/S1352-2310(00)00261-2.
  • Vaz Patto MC, Rubiales D. 2014. Lathyrus diversity: available resources with relevance to crop improvement–L. sativus and L. cicera as case studies. Ann Bot-London. 113(6):895–908. doi:10.1093/aob/mcu024.
  • Wang X, Wang S, Tao J, Sun G, Mao J. 2018. A PCA–ANN-based inverse design model of stall lift robustness for high-lift device. Aerosp Sci Technolo. 81:272–283. doi:10.1016/j.ast.2018.08.019.
  • Xu Q, Liu F, Chen P, Jez J, Krishnan H. 2017. β-N-Oxalyl-L-α, β-diaminopropionic acid (β-ODAP) content in Lathyrus sativus: the integration of nitrogen and sulfur metabolism through β-cyanoalanine synthase. Int J Mol Sci. 18(3):526. doi:10.3390/ijms18030526.
  • Zekić-Sušac M, Šarlija N, Pfeifer S. 2013. Combining PCA analysis and artificial neural networks in modelling entrepreneurial intentions of students. Croat Oper Res Rev. 4(1):306–317.
  • Zeng W, Xu C, Wu J, Huang J. 2016. Sunflower seed yield estimation under the interaction of soil salinity and nitrogen application. Field Crop Res. 198:1–15. doi:10.1016/j.fcr.2016.08.007.
  • Zhou L, Cheng S, Yu H 2016, December. Detection of chlorophyll content of Rice Leaves by chlorophyll fluorescence spectrum based on PCA-ANN. 2016 7th International Conference on Mechatronics, Control and Materials (ICMCM 2016). Changsha, China: Atlantis Press.
  • Zhou L, Ma W, Zhang H, Li L, Tang L. 2015. Developing a PCA–ANN model for predicting chlorophyll a concentration from field hyperspectral measurements in Dianshan Lake, China. Water Qual Expos Health. 7(4):591–602. doi:10.1007/s12403-015-0175-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.