335
Views
9
CrossRef citations to date
0
Altmetric
Articles

Influence of field pea (Pisum sativum L.) as catch crop cultivated for green manure on soil phosphorus and P-cycling enzyme activity

&
Pages 1570-1582 | Received 13 Mar 2019, Accepted 10 Jan 2020, Published online: 21 Jan 2020

References

  • Bremner JM, Mulvaney CS. 1982. Nitrogen - total. In: Page AL, Miller RH, Keeny DR, editors. Methods of soil analysis. Part 2. Madison: American Society of Agronomy; p. 594–624.
  • Brookes PC, Powelson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem. 14:319–329. doi:10.1016/0038-0717(82)90001-3.
  • Browman MG, Tabatabai MA. 1978. Phosphodiesterase activity in soils. Soil Sci Soc Am J. 42:284–290. doi:10.2136/sssaj1978.03615995004200020016x.
  • Bünemann EK, Prusisz B, Ehlers K. 2011. Characterization of phosphorus forms in soil microorganisms. In: Bünemann EK, Oberson A, Frossard E, editors. Phosphorus in action – biological processes in soil phosphorus cycling. Soil Biology (Vol. 26). Heidelberg: Springer; p. 37–57.
  • Burt R. 2004. Soil Survey laboratory methods manual. Soil Survey Investigations Report No. 42, version 4.0. Lincoln (Nebraska): USDA-NRCS.
  • Cavigelli MA, Thien SJ. 2003. Phosphorus bioavailability following incorporation of green manure crops. Soil Sci Soc A J. 67:1186–1194. doi:10.2136/sssaj2003.1186.
  • Condron LM, Turner BL, Cade-Menun BJ. 2005. Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN, editors. Phosphorus: agriculture and the environment. Madison: American Society of Agronomy; p. 87–121.
  • Cosgrove DJ. 1967. Metabolism of organic phosphates in soil. In: McLaren AD, Peterson GH, editors. Soil Biochemistry. New York: Marcel Dekker; p. 216–228.
  • Deng SP, Tabatabai MA. 1997. Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biol Fertil Soils. 24(2):141–146. doi:10.1007/s003740050222.
  • Egamberdieva D, Renella G, Writh S, Islam R. 2011. Enzymes activities in the rhizosphere of plants. In: Shukla G, Varma A, editors. Soil enzymology, soil biology (Vol. 22). Berlin Heidelberg: Springer-Verlag; p. 149–166.
  • Egner H, Riehm H, Domingo WR. 1960. Studies concerning the chemical analysis of soils as background for soil nutrient assessment. II. Chemical extracting methods to determinate the phosphorous and potassium content of soil (in German). Kungl Lantbrukshögskolans Annaler. 26:199–215.
  • Eichler B, Caus M, Schnug E, Köppen D. 2004. Soil acid and alkaline phosphatase activities in regulation to crop species and fungal treatment. Landbauforsch. Völk. 1(54):1-5.
  • Eichler-Löbermann B, Bachmann S, Busch S, Schiemenz K, Krey T, Pfahler V, Uptmoor R. 2016. Management options for an efficient utilization of phosphorus in agroecosystems. In: Schung E, De Kok LJ, editors. Phosphorus in agriculture. Dordrecht: Springer Science Business Media; p. 179–193.
  • Eichler-Löbermann B, Köhne S, Kowalski B, Schnug E. 2008. Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization. J Plant Nutr. 31:659–676. doi:10.1080/01904160801926517.
  • Eichler-Löbermann B, Schnug E. 2006. Crop plants and the availability of phosphorus in soil. Taylor and Francis: Encyclopedia of Soil Science; p. 1–3.
  • Elfstrand S. 2007. Impact of Green Manure on Soil Organisms - With Emphasis on Microbial Community Composition and Function [dissertation]. Swedish University of Agricultural Sciences.
  • Fageria NK, Baligar VC, Bailey BA. 2005. Role of cover crops in improving soil and row crop productivity. Commun Soil Sci Plant Anal. 36:2733–2757. doi:10.1080/00103620500303939.
  • Gao X, Shi D, Lv A, Wang S, Yuan S, Zhou P, An Y. 2016. Increase phosphorus availability from The use of alfalfa (Medicago sativa L) green manure in rice (Oryza sativa L.) agroecosystem. Sci Rep. 6:1–13. doi:10.1038/srep36981.
  • Hallama M, Parkun C, Lambers H, Kandeler E. 2019. Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant Soil. 434(1–2):7–45.
  • Hansen EM, Djurhuus J, Dick WA. 1997. Nitrate leaching as influenced by soil tillage and catch crop. Soil Biol Till. 41:203–219. doi:10.1016/S0167-1987(96)01097-5.
  • Hojati S, Nourbakhsh F. 2006. Enzyme activities and microbial biomass carbon in a soil amended with organic and inorganic fertilizers. Journal Agron. 5:563–569. doi:10.3923/ja.2006.563.569.
  • Kraska P. 2011. Effect of conservation tillage and catch crops on some chemical properties of rendzina soil. Acta Sci Pol Agricultura. 10(3):77–92.
  • Kujur M, Patel AK. 2014. Kinetics of soil enzyme activities under different ecosystems: an index of soil quality. Chilean J Agric Res. 74(1):96–104. doi:10.4067/S0718-58392014000100015.
  • Lemanowicz J. 2018. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. Environ Sci Pollution Res. 25(33):33773–33782. doi:10.1007/s11356-018-3348-5.
  • Margalef O, Sardans J, Fernández-Martínez M, Molowny-Horas R, Janssens IA, Ciais P, Goll D, Richter A, Obersteiner M, Asensio D, et al. 2017. Global patterns of phosphatase activity in natural soils. Sci Rep. 7:1337. doi:10.1038/s41598-017-01418-8.
  • Margesin R, Schinner F. 1994. Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability. Biol Fertil Soils. 18:320–326. doi:10.1007/BF00570635.
  • Nannipieri P, Giagnoni L, Landi L, Renella G. 2011. Role of phosphatase enzymes in soil. In: Bünemann EK, Oberson A, Frossard E, editors. Phosphorus in action. Berlin (Heidelberg): Springer; p. 215–243.
  • Oberson A, Joner EJ. 2005. Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS, editors. Organic phosphorus in the environment. Wallingford: CABI (UK); p. 133–164.
  • Okur N, Altindişli A, Çengel M, Göçmez S, Kayikçioğlu HH. 2009. Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turk J Agric For. 33:413–423.
  • Olsen SR, Sommers LE. 1982. Phosphorus. In: Page AL, Miller RH, Kenny DR, editors. Methods of soil analysis. Part 2. Madison: American Society of Agronomy; p. 403–430.
  • Piotrowska-Długosz A, Wilczewski E. 2014a. Soil phosphatase activity and phosphorus content as influenced by catch crops cultivated as green manure. Pol J Environ Stud. 23(1):157–165.
  • Piotrowska-Długosz A, Wilczewski E. 2014b. Assessment of soil nitrogen and related enzymes as influenced by the incorporation time of field pea cultivated as a catch crop in Alfisol. Environ Monit Assess. 186:8425–8441. doi:10.1007/s10661-014-4014-0.
  • Rejsek K, Vranova V, Pavelka M, Formanek P. 2012. Acid phosphomonoesterase (E.C. 3.1.3.2) location in soil. J Plant Nutr Soil Sci. 175:196–211. doi:10.1002/jpln.v175.2.
  • Richardson AE, Simpson RJ. 2011. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156:989–996. doi:10.1104/pp.111.175448.
  • Roldán A, Caravaca F, Hernández MT, García C, Sánchez-Brito C, Velásquez M, Tiscareño M. 2003. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Till Res. 72:65–73. doi:10.1016/S0167-1987(03)00051-5.
  • Šarapatka B. 2003. Phosphatase activities (ACP, ALP) in agroecosystem soils [dissertation]. Uppsala: Swedish University of Agricultural Sciences
  • Siwik-Ziomek A, Lemanowicz J, Koper J. 2016. Sulphur and phosphorus content as well as the activity of hydrolases in soil fertilized with macroelements. J Elementol. 21(3):847–858.
  • Sparling GE, Speir TW, Whale KN. 1986. Changes in microbial biomass C, ATP content, soil phosphomonoesterase abd phosphodiesterase activity following air-drying of soil. Soil Biol Biochem. 18:363–370. doi:10.1016/0038-0717(86)90039-8.
  • Staff SS. 2010. Keys to Soil Taxonomy. 11th ed. Washington: USDA Natural Resources Conservation Service.
  • Symanowicz B, Kalembasa S, Skorupka W, Niedbała M. 2014. The changes of enzymatic activity of soil under eastern galega (Galega orientalis Lam.) after NPKCa fertilization. Plant Soil Environ. 60(3):123–128. doi:10.17221/905/2013-PSE.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenylophosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1:301–307. doi:10.1016/0038-0717(69)90012-1.
  • Tejada M, Gonzalez JL, García-Martínez AM, Parrado J. 2008. Effects of different green manures on soil biological properties and maize yield. Bioresour Technol. 99:1758–1767. doi:10.1016/j.biortech.2007.03.052.
  • Thorup-Kristensen K, Dresbøll DB. 2010. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use Manage. 26:27–35. doi:10.1111/j.1475-2743.2009.00255.x.
  • Thorup-Kristensen K, Magid J, Jensen LS. 2003. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron. 79:227–302.
  • Tiessen H, Stewart JWB, Oberson A. 1994. Innovative soil phosphorus availability indices: assessing organic phosphorus. In: Havlin JL, Jacobsen JS, editors. Soil testing: prospects for improving nutrient recommendations. Madison: SSSA Spec. Pub. No. 40. SSSA and ASA; p. 143–162.
  • Turner BL, Haygarth PM. 2005. Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci Tot Environ. 344:27–36. doi:10.1016/j.scitotenv.2005.02.003.
  • Turner BL, Lambers H, Condron LM, Cramer MD, Leake JR, Richardson AE, Smith SE. 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil. 367(1–2):225–234. doi:10.1007/s11104-012-1493-z.
  • Turner BL, Newman S. 2005. Phosphorus cycling in wetland soils: the importance of phosphate diesters. J Environ Qual. 34:1921–1929. doi:10.2134/jeq2005.0060.
  • Ullah R, Lone MI, Mian SM, Ali S, Ullah KS, Sheikh AA, Ali I. 2012. Impact of seasonal variations and cropping systems on soil microbial biomass and enzymatic activities in slope gradient moisture stressed soils of Punjab-Pakistan. Soil Environ. 31(1):21–29.
  • Wang JB, Chen ZH, Chen LJ, Zhu AN, Wu ZJ. 2011. Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant Soil Environ. 75(6):251–257. doi:10.17221/437/2010-PSE.
  • Wanic M, Żuk-Gołaszewska K, Orzech K. 2019. Catch crops and the soil environment – a review of the literature. J Elem. 42(1):31–45.
  • Wilczewski E, Piotrowska-Długosz A, Lemańczyk G. 2014. Influence of catch crop on soil properties and yield of spring barley. Int J Plant Prod. 89(3):391–407.
  • Zhou X, Zhang Y. 2014. Temporal dynamics of soil oxidative enzyme activity across a simulated gradient of nitrogen deposition in the Gurbantunggut Desert, Northwestern China. Geoderma. 213:261–267. doi:10.1016/j.geoderma.2013.08.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.