374
Views
6
CrossRef citations to date
0
Altmetric
Articles

Warming and elevated CO2 interactively affect the photosynthetic carbon of maize plant retained in major farming soils

ORCID Icon, , ORCID Icon, , , , , & show all
Pages 474-486 | Received 29 Jun 2019, Accepted 24 Feb 2020, Published online: 10 Mar 2020

References

  • Bischoff N, Mikutta R, Shibistova O, Puzanov A, Silanteva M, Grebennikova A, Fu R, Guggenberger G. 2017. Limited protection of macro-aggregate-occluded organic carbon in Siberian steppe soils. Biogeosci. 14(10):2627–2640. doi:10.5194/bg-14-2627-2017.
  • Bita CE, Gerats T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 4:273. doi:10.3389/fpls.2013.00273.
  • Black CK, Davis SC, Hudiburg TW, Bernacchi CJ, DeLucia EH. 2017. Elevated CO2 and temperature increase soil C losses from a soy-maize ecosystem. Global Change Biol. 23:435–445. doi:10.1111/gcb.13378.
  • Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y. 2011. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biol Biochem. 43(1):159–166. doi:10.1016/j.soilbio.2010.09.028.
  • Bolan NS, Baskaran S, Thiagarajan S. 1996. An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Commun Soil Sci Plant Anal. 27(13/14):2723–2737. doi:10.1080/00103629609369735.
  • Bonan GB. 2008. Forests and climate change forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi:10.1126/science.1155121.
  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD. 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett. 11:1316–1327. doi:10.1111/j.1461-0248.2008.01251.x.
  • Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang. 6:751–758. doi:10.1038/nclimate3071.
  • Carney KM, Hungate BA, Drake BG, Megonigal JP. 2007. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. P Natl Acad Sci USA. 104:4990–4995. doi:10.1073/pnas.0610045104.
  • Carrillo Y, Dijkstra F, LeCain D, Blumenthal D, Pendall E, Liu LL. 2018. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol Lett. 21:1639–1648. doi:10.1111/ele.13140.
  • Carrillo Y, Dijkstra FA, LeCain D, Morgan JA, Blumenthal D, Waldron S, Pendall E. 2014. Disentangling root responses to climate change in a semiarid grassland. Oecologia 175(2):699–711. doi:10.1007/s00442-014-2912-z.
  • Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540:104–110. doi:10.1038/nature20150.
  • Curtin D, Beare MH, Hernandez-Ramirez G. 2012. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci Soc Am J. 76:2055–2067. doi:10.2136/sssaj2012.0011.
  • Domanski G, Kuzyakov Y, Siniakina SV, Stahr K. 2001. Carbon flows in the rhizosphere of ryegrass (Lolium perenne). J Plant Nutr Soil Sci. 164:381–387. doi:10.1002/1522-2624(200108)164:4.
  • Dungait J, Hopkins DW, Gregory AS, Whitmore AP. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biol. 18:1781–1796. doi:10.1111/j.1365-2486.2012.02665.x.
  • Dusenge ME, Duarte AG, Way DA. 2019. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221:32–49. doi:10.1111/nph.15283.
  • Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem. 35(6):837–843. doi:10.1016/S0038-0717(03)00123-8.
  • Frey SD, Drijber R, Smith H, Melillo J. 2008. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol Biochem. 40(11):2904–2907. doi:10.1016/j.soilbio.2008.07.020.
  • Frey SD, Lee J, Melillo JM, Six J. 2013. The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change. 3:95–398. doi:10.1038/nclimate1796.
  • Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P. 2014. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Change. 4:903–906. doi:10.1038/nclimate2361.
  • Hamer U, Marschner B. 2005a. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol Biochem. 37(3):445–454. doi:10.1016/j.soilbio.2004.07.037.
  • Hamer U, Marschner B. 2005b. Priming effects in soils after combined and repeated substrate additions. Geoderma 128:38–51. doi:10.1016/j.geoderma.2004.12.014.
  • Hartmann DL, Klein Tank A, Rusicucci M, Alexander LV, Broenniman B, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A. 2013. Observations: atmosphere and surface. In: Stocker TF, Qin DH, Plattner G, Tignor MMB, Allen SK, Boschung J, Nauels A, Bex V, Midgley PM, editors. Climate change 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge United Kingdom and New York (NY), USA: Cambridge University Press; p. 159–254.
  • Hopkins FM, Filley TR, Gleixner G, Lange M, Top SM, Trumbore SE. 2014. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biol Biochem. 76:57–69. doi:10.1016/j.soilbio.2014.04.028.
  • Hopkins FM, Torn MS, Trumbore SE. 2012. Warming accelerates decomposition of decades-old carbon in forest soils. P Natl Acad Sci USA. 109:1753–1761. doi:10.1073/pnas.1120603109.
  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, et al. 2007. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173:463–480. doi:10.1111/j.1469-8137.2007.01967.x.
  • IUSS Working Group WRB. 2014. World reference base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps. Rome:Food and Agriculture Organization of the United Nations.
  • Jin J, Armstrong R, Tang C. 2019. Impact of elevated CO2 on grain nutrient concentration varies with crops and soils–a long-term FACE study. Sci Total Environ. 651:2641–2647. doi:10.1016/j.scitotenv.2018.10.170.
  • Jin J, Tang C, Armstrong R, Butterly C, Sale P. 2013. Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil 368:315–328. doi:10.1007/s11104-012-1516-9.
  • Jin J, Wang G, Liu X, Mi L, Li Y, Xu Y, Herbert SJ. 2010. Genetic improvement of yield shapes the temporal and spatial root morphology of soybean (Glycine max) grown in northeast China. New Zeal J Crop Hort. 38:177–188. doi:10.1080/01140671.2010.495375.
  • Karhu K, Auffret MD, Dungait JA, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Agren GI, Sebastià MT, et al. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84. doi:10.1038/nature13604.
  • Kimball BA. 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol. 31:36–43. doi:10.1016/j.pbi.2016.03.006.
  • Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem. 32(11/12):1485–1498. doi:10.1016/S0038-0717(00)00084-5.
  • Kuzyakov Y, Hill PW, Jones DL. 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290(1/2):293–305. doi:10.1007/s11104-006-9162-8.
  • Li YS, Yu ZH, Jin J, Zhang QY, Wang GH, Liu CK, Wu JJ, Wang C, Liu XB. 2017. Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Front Plant Sci. 9:1413. doi:10.3389/fpls.2018.01413.
  • Lu YH, Watanabe A, Kimura M. 2002. Input and distribution of photosynthesized carbon in a flooded rice soil. Global Biogeochem Cy. 16(4):1085. doi:10.1029/2002GB001864.
  • Marschner P, Crowley D, Yang CH. 2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261(1/2):199–208. doi:10.1023/B:PLSO.0000035569.80747.c5.
  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176. doi:10.1126/science.1074153.
  • Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M. 2011. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205. doi:10.1038/nature10274.
  • Mueller KE, Blumenthal DM, Pendall E, Carrillo Y, Dijkstra FA, Williams DG, Follett RF, Morgan JA. 2016. Impacts of warming and elevated CO2 on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time. Ecol Lett. 19:956–966. doi:10.1111/ele.12634.
  • Nie M, Lu M, Bell J, Raut S, Pendall E. 2013b. Altered root traits due to elevated CO2: a meta-analysis. Glob Ecol Biogeogr. 22:1095–1105. doi:10.1111/geb.12062.
  • Nie M, Pendall E, Bell C, Gasch CK, Raut S, Tamang S, Wallenstein MD. 2013a. Positive climate feedbacks of soil microbial communities in a semiarid grassland. Ecol Lett. 16(2):234–241. doi:10.1111/ele.12034.
  • Orchard VA, Cook FJ. 1983. Relationship between soil respiration and soil moisture. Soil Biol Biochem. 15(4):447–453. doi:10.1016/0038-0717(83)90010-x.
  • Osburn MR, Sessions AL, Pepe-Ranney C, Spear JR. 2011. Hydrogen-isotopic variability in fatty acids from yellowstone national park hot spring microbial communities. Geochim Cosmochim Ac. 75(17):4830–4845. doi:10.1016/j.gca.2011.05.038.
  • Panozzo JF, Walker CK, Maharjan P, Partington DL, Korte CJ. 2019. Elevated CO2 affects plant nitrogen and water-soluble carbohydrates but not in vitro metabolisable energy. J Agro Crop Sci. 205:647–658. doi:10.1111/jac.12359.
  • Parton WJ, Morgan JA, Wang GM, Del Grosso S. 2007. Projected ecosystem impact of the prairie heating and CO2 enrichment experiment. New Phytol. 174(4):823–834. doi:10.1111/j.1469-8137.2007.02052.x.
  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter D, Johnson DW, Law BE, Luo YQ, Megonigal JP, Olsrud M, et al. 2004b. Belowground process responses elevated CO2 and temperature: a discussion of observations measurement methods, and models. New Phytol. 162:311–322. doi:10.2307/1514503.
  • Pendall E, Heisler-White JL, Williams DG, Dijkstra FA, Carrillo Y, Morgan JA, LeCain DR, Bernacchi CJ. 2013. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide. PLoS One 8:e71921. doi:10.1371/journal.pone.0071921.
  • Pendall E, Mosier AR, Morgan JA. 2004a. Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol. 162(2):447–458. doi:10.1111/j.1469-8137.2004.01054.x.
  • Phillips DA, Fox TC, Six J. 2006. Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Global Change Biol. 12(3):561–567. doi:10.1111/j.1365-2486.2006.01100.x.
  • Phillips RP, Finzi AC, Bernhardt ES. 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett. 14(2):187–194. doi:10.1111/j.1461-0248.2010.01570.x.
  • Shahzad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S. 2015. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem. 80:146–155. doi:10.1016/j.soilbio.2014.09.023.
  • Shao P, Zeng Z, Moore DJP, Zeng X. 2013. Soil microbial respiration from observations and earth system models. Environ Res Lett. 8(3):034034. doi:10.1088/1748-9326/8/3/034034.
  • Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F. 2013. Global hot-spots of heat stress on agricultural crops due to climate change. Agr Forest Meteorol. 170(1):206–215. doi:10.1016/j.agrformet.2011.09.002.
  • Thiessen S, Gleixner G, Wutzler T, Reichstein M. 2013. Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass: an incubation study. Soil Biol Biochem. 57:739–748. doi:10.1016/j.soilbio.2012.10.029.
  • Van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA. 2014. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–510. doi:10.1126/science.1249534.
  • Vanaja M, Maheswari M, Jyothi LN, Sathish P, Yadav SK, Salini K, Vagheera P, Vijay KG, Razak A. 2015. Variability in growth and yield response of maize genotypes at elevated CO2 concentration. Adv Plants Agric Res. 2:00042. doi:10.15406/apar.2015.02.00042.
  • Wang XJ, Tang CX, Severi J, Butterly CR, Baldock JA. 2016. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211:864–873. doi:10.1111/nph.13966.
  • Xu Q, Jin J, Wang XJ, Armstrong R, Tang CX. 2019. Susceptibility of soil organic carbon to priming after long-term CO2 fumigation is mediated by soil texture. Sci Total Environ. 657:1112–1120. doi:10.1016/j.scitotenv.2018.11.437.
  • Yu ZH, Li YS, Jin J, Liu XB, Wang GH. 2016. Carbon flow in the plant-soil-microbe continuum at different growth stages of maize grown in a mollisol. Arch Agron Soil Sci. 63(3):362–374. doi:10.1080/03650340.2016.1211788.
  • Zhang W, Wang X, Wang S. 2013. Addition of external organic carbon and native soil organic carbon decomposition: a meta-analysis. PLoS One 8:e54779. doi:10.1371/journal.pone.0054779.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.