167
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Quantifying sheet erosion rate on steep grassland in the loess region of China

, , , , , , & show all
Pages 1554-1565 | Received 17 Oct 2019, Accepted 21 Jul 2020, Published online: 16 Aug 2020

References

  • Al-Durrah M, Bradford JM. 1981. New methods of studying soil detachment due to waterdrop impact. Soil Sci Soc Am J. 45:949–953. doi:10.2136/sssaj1981.03615995004500050026x.
  • Ali M, Sterk G, Seeger M, Boersema M, Peters P. 2012. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds. Hydrol Earth Syst Sc. 16:591–601. doi:10.5194/hess-16-591-2012.
  • An J, Zheng FL, Lu J, Li GF. 2012. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions. Soil Sci. 177:517–526. doi:10.1097/SS.0b013e3182639de1.
  • Brindle FA. 2003. Use of native vegetation and biostimulants for controlling soil erosion on steep terrain. Transport Res Rec. 1819:203–209. doi:10.3141/1819a-30.
  • Bulygin SY, Nearing MA, Achasov AB. 2002. Parameters of interrill erodibility in the WEPP model. Eurasian Soil Sci. 35:1237–1242.
  • Cao SX, Chen L, Yu XX. 2009. Impact of China’s Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: a case study in northern Shaanxi Province. J Appl Ecol. 46:536–543. doi:10.1111/j.1365-2664.2008.01605.x.
  • Cerda A. 1998. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Can J Soil Sci. 78:321–330. doi:10.4141/S97-060.
  • Chen N, Ma TY, Zhang XP. 2016. Responses of soil erosion processes to land cover changes in the Loess Plateau of China: a case study on the Beiluo River basin. Catena 136:118–127. doi:10.1016/j.catena.2015.02.022.
  • Foster GR, Huggins LF, Meyer LD. 1984a. A laboratory study of rill hydraulics: I. Velocity relationships. Trans ASAE. 27:790–796. doi:10.13031/2013.32873.
  • Foster GR, Huggins LF, Meyer LD. 1984b. A laboratory study of rill hydraulics: II. Shear stress relationships. Trans ASAE. 27:797–804. doi:10.13031/2013.32874.
  • Fox DM, Bryan RB. 2000. The relationship of soil loss by interrill erosion to slope gradient. Catena 38:211–222. doi:10.1016/S0341-8162(99)00072-7.
  • Ghebreiyessus Y, Gantzer C, Alberts E. 1994. Soil erosion by concentrated flow: shear stress and bulk density. Trans ASAE. 37:1791–1797. doi:10.13031/2013.28268.
  • Gilley JE, Elliot WJ, Laflen JM, Simanton JR. 1993. Critical shear stress and critical flow rates for initiation of rilling. J Hydrol. 142(1–4):251–271. doi:10.1016/0022-1694(93)90013-Y.
  • Gómez JA, Nearing MA. 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena 59(3):253–266. doi:10.1016/j.catena.2004.09.008.
  • Huang CH. 1995. Empirical analysis of slope and runoff for sediment delivery from interrill areas. Soil Sci Soc Am J. 59:982–990. doi:10.2136/sssaj1995.03615995005900040004x.
  • Kinnell PIA. 1993. Runoff as a factor influencing experimentally determined interrill erodibilities. Soil Res. 31(3):333–342. doi:10.1071/SR9930333.
  • Li Q, Liu GB, Zhang Z, Tuo DF, Xu MX. 2015a. Effect of root architecture on structural stability and erodibility of topsoils during concentrated flow in hilly Loess Plateau. Chinese Geogr Sci. 25:757–764. doi:10.1007/s11769-014-0723-0.
  • Li ZW, Zhang GH, Geng R, Wang H, Zhang XC. 2015b. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 124:9–17. doi:10.1016/j.catena.2014.08.019.
  • Liu JE, Wang ZL, Yang XM, Jiao N, Shen N, Ji PF. 2014. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope. Soil Till Res. 139:23–27. doi:10.1016/j.still.2014.01.004.
  • Morgan RPC, McIntyre K, Vickers AW, Quinton JN, Rickson RJ. 1997. A rainfall simulation study of soil erosion on rangeland in Swaziland. Soil Technol. 11:291–299. doi:10.1016/S0933-3630(97)00013-5.
  • Morvan X, Naisse C, Malam Issa O, Desprats JF, Combaud A, Cerdan O. 2014. Effect of ground-cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use Manage. 30:372–381. doi:10.1111/sum.12129.
  • Moss AJ. 1988. Effects of flow-velocity variation on rain-driven transportation and the role of rain impact in the movement of solids. Aust J Soil Res. 26:443–450. doi:10.1071/SR9880443.
  • Muñoz-Carpena R, Parsons JE. 2004. A design procedure for vegetative filter strips using VFSMOD-W. Trans ASAE. 47:1933–1941. doi:10.13031/2013.17806.
  • Nearing MA, Simanton JR, Norton LD, Bulygin SJ, Stone J. 1999. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surf Proc Land. 24:677–686. doi:10.1002/(SICI)1096-9837(199908)24:8<677::AID-ESP981>3.0.CO;2-1.
  • Nearing MA, Wei H, Stone JJ, Pierson FB, Spaeth KE, Weltz MA, Flanagan DC, Hernandez M. 2011. A rangeland hydrology and erosion model. Trans ASAE. 54:901–908. doi:10.13031/2013.37115.
  • Parsons AJ, Stone PM. 2006. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion. Catena 67:68–78. doi:10.1016/j.catena.2006.03.002.
  • Prosser IP, Rustomji P. 2000. Sediment transport capacity relations for overland flow. Prog Phys Geog. 24:179–193. doi:10.1177/030913330002400202.
  • Shi H, Shao M. 2000. Soil and water loss from the Loess Plateau in China. J Arid Environ. 45:9–20. doi:10.1006/jare.1999.0618.
  • Sun P, Wu Y, Yang Z, Sivakumar B, Qiu L, Liu S, Cai Y. 2019. Can the Grain-for-Green program really ensure a low sediment load on the Chinese Loess Plateau? Engineering 5:855–864. doi:10.1016/j.eng.2019.07.014.
  • Tian P, Zhai JQ, Zhao GJ, Mu XM. 2016. Dynamics of runoff and suspended sediment transport in a highly erodible catchment on the Chinese Loess Plateau. Land Degrad Dev. 27:839–850. doi:10.1002/ldr.2373.
  • Vannoppen W, Vanmaercke M, Baets SD, Poesen J. 2015. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Sci Rev. 150:666–678. doi:10.1016/j.earscirev.2015.08.011.
  • Wainwright J, Parsons AJ, Abrahams AD. 2000. Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico. Hydrol Process. 14:2921–2943. doi:10.1002/1099-1085(200011/12)14:16/17<2921::AID-HYP127>3.0.CO;2-7.
  • Wang B, Zhang GH, Shi YY, Zhang XC. 2014. Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena 116:51–59. doi:10.1016/j.catena.2013.12.010.
  • Wang DD, Wang ZL, Zhang QW, Zhang QL, Tian NL, Liu JE. 2018. Sheet erosion rates and erosion control on steep rangelands in loess regions. Earth Surf Proc Land. 43:2926–2934. doi:10.1002/esp.4460.
  • Wang XD, Wang ZY. 1999. Effect of land use change on runoff and sediment yield. Int J Sediment Res. 14:37–44.
  • Wei H, Nearing MA, Stone JJ, Guertin DP, Spaeth KE, Pierson FB, Nichols MH, Moffet CA. 2009. A new splash and sheet erosion equation for rangelands. Soil Sci Soc Am J. 73:1386–1392. doi:10.2136/sssaj2008.0061.
  • Wu B, Wang ZL, Zhang QW, Shen N, Liu JE. 2017. Modelling sheet erosion on steep slopes in the loess region of China. J Hydrol. 553:549–558. doi:10.1016/j.jhydrol.2017.07.017.
  • Yang CT. 1972. Unit stream power and sediment transport. J Hydr Div. 98:1805–1826.
  • Yu Y, Wei W, Chen LD, Jia FY, Yang L, Zhang HD, Feng TJ. 2015. Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China. Solid Earth. 6:595–608. doi:10.5194/se-6-595-2015.
  • Yüksek F, Yüksek T. 2015. Growth performance of sainfoin and its effects on the runoff, soil loss and sediment concentration in a semi-arid region of turkey. Catena 133:309–317. doi:10.1016/j.catena.2015.05.018.
  • Zhang FB, Wang ZL, Yang MY. 2014. Validating and improving interrill erosion equations. Plos One 9:1–10.
  • Zhang XC, Nearing MA, Norton LD, Miller WP, West LT. 1998. Modeling interrill sediment delivery. Soil Sci Soc Am J. 62:438–444. doi:10.2136/sssaj1998.03615995006200020021x.
  • Zhao CH, Gao JE, Huang YF, Wang GQ, Xu Z. 2017. The contribution of astragalus adsurgens roots and canopy to water erosion control in the water–wind crisscrossed erosion region of the Loess Plateau, China. Land Degrad Dev. 28:265–273. doi:10.1002/ldr.2508.
  • Zhao CH, Gao JE, Huang YF, Wang GQ, Zhang MJ. 2016. Effects of vegetation stems on hydraulics of overland flow under varying water discharges. Land Degrad Dev. 27:748–757. doi:10.1002/ldr.2423.
  • Zhao G, Mu X, Wen Z, Wang F, Gao P. 2013. Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad Dev. 24:499–510. doi:10.1002/ldr.2246.
  • Zhou ZC, Gan ZT, Shangguan ZP, Dong ZB. 2010. Effects of grazing on soil physical properties and soil erodibility in semiarid grassland of the Northern Loess Plateau (China). Catena 82:87–91. doi:10.1016/j.catena.2010.05.005.
  • Zhou ZC, Shangguan ZP, Zhao D. 2006. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecol Model. 198:263–268. doi:10.1016/j.ecolmodel.2006.04.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.