637
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Breeding rice for heat tolerance and climate change scenario; possibilities and way forward. A review

, ORCID Icon, , , , , , , , , & show all
Pages 115-132 | Received 29 Jan 2020, Accepted 16 Sep 2020, Published online: 05 Nov 2020

References

  • Aggarwal PK, Mall RK. 2002. Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Clim Change. 52(3):331–343.
  • Ali F, Waters DLE, Ovenden B, Bundock P, Raymond CA, Rose TJ. 2019. Australian rice varieties vary in grain yield response to heat stress during reproductive and grain filling stages. J Agron Crop Sci. 205:179–187.
  • Asm M, Hu A. 2016. Evaluation of rice lines tolerant to heat during flowering stage. Rice Res Open Access. 4(3):1–5.
  • Barnabás B, Jäger K, Fehér A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31(1):11–38.
  • Bheemanahalli R, Sathishraj R, Manoharan M, Sumanth HN, Raveendran M, Ishimaru T, Krishna JSV. 2017. Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? F Crop Res. 203:238–242.
  • Blum A. 1988. Plant breeding for stress environments Boca Raton. Florida: CRC Press. Inc.; p. 223.
  • Cao Z, Li Y, Tang H, Zeng B, Tang X, Long Q, Wu X, Cai Y, Yuan L, Wan J. 2020. Fine mapping of the qHTB1-1QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line. Theor Appl Genet. 133(4):1161–1175.
  • Chapman SC, Chakraborty S, Dreccer MF, Howden SM. 2012. Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci. 63(3):251.
  • Chen L, Wang Q, Zhang X, Tang M, Pan Y, Gao G, Lv R, Tao W, Jiang L, Liang T. 2020. QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Research Square. 1–15. doi:https://doi.org/10.21203/rs.3.rs-35254/v1
  • Cheng LR, Wang JM, Uzokwe V, Meng LJ, Wang Y, Sun Y, Zhu LH, Xu JL, Li ZK. 2012. genetic analysis of cold tolerance at seedling stage and heat tolerance at anthesis in rice (Oryza sativa L.). J Integr Agric. 11(3):359–367.
  • Das G, Rao GJN. 2015. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci. 6:698.
  • Das S, Krishnan P, Nayak M, Ramakrishnan B. 2013. Changes in antioxidant isozymes as a biomarker for characterizing high temperature stress tolerance in rice (Oryza sativa L.) spikelets. Exp Agric. 49(1):53–73.
  • Deng Y, Wang W, Li WQ, Xia C, Liao HZ, Zhang XQ, Ye D. 2010. Male gametophyte defective 2, encoding a sialyltransferase-like prote is required for normal pollen germination and pollen tube growth in Arabidopsis. J Integr Plant Biol. 52:829–843.
  • Dreccer MF, Bonnett D, Lafarge T. 2012. Plant breeding under a changing climate. In: Meyers RA, editor. Encyclopedia of sustainability science and technology. New York: Springer; p. 477–492.
  • Driedonks N, Rieu I, Vriezen WH. 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod. 29(1–2):67–79.
  • El-Esawi MA, Alayafi AA. 2019. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes (Basel). 10(1):56.
  • Endo M, Tsuchiya T, Hamada K, Kawamura S, Yano K, Ohshima M, Higashitani A, Watanabe M, Kawagishi-Kobayashi M. 2009. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 50(11):911–1922.
  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Amanullah NW, Arif M, Wang F, Huang J. 2016. Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci. 202(2):139–150.
  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot. 66(21):6803–6817.
  • Foolad MR. 2005. Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC, editors. Abiotic stresses: plant resistance through breeding and molecular approaches. New York: The Haworth Press Inc.; p. 613–684.
  • Fu GF, Zhang CX, Yang YJ, Xiong J, Yang XQ, Zhang XF, Jin QY, Tao LX. 2015. Male parent plays more important role in heat tolerance in three-line hybrid rice. Rice Sci. 22(3):116–122.
  • González-Schain N, Dreni L, Lawas LMF, Galbiati M, Colombo L, Heuer S, Jagadish KSV, Kater MM. 2016. Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties. Plant Cell Physiol. 57(1):57–68.
  • Gourdji SM, Sibley AM, Lobell DB. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 8(2):024041.
  • Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, Wang J. 2008. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics. 35(2):105–118.
  • Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H. 2012. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol J. 10(9):1110–1117.
  • Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF. 2019. Plant abiotic stress tolerance: agronomic, molecular and biotechnological approaches. Plant Abiotic Stress Toler Agron Mol Biotechnol Approaches. 1–490. doi:https://doi.org/10.1007/978-3-030-06118-0
  • Hirabayashi H, Sasaki K, Kambe T, Gannaban RB, Miras MA, Mendioro MS, Simon EV, Lumanglas PD, Fujita D, Takemoto-Kuno Y, et al. 2015. QEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa J Exp Bot. 66(5):1227–1236.
  • Howarth CJ. 2005. Genetic improvements of tolerance to high temperatures. In: Ashraf M, Harris PJC, editors. Abiotic stresses: plant resistance through breeding and molecular approaches. New York: Howarth Press Inc.; p. 277–300.
  • IFPRI. 2016. Global nutrition report 2016: from promise to impact: ending malnutrition by 2030. Washington (D.C). doi:https://doi.org/10.2499/9780896295841
  • Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M. 2010. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann Bot. 106(3):515–520.
  • Ishimaru T, Hirabayashi H, Kuwagata T, Ogawa T, Kondo M. 2012. The early-morning flowering trait of rice reduces spikelet sterility under windy and elevated temperature conditions at anthesis. Plant Prod Sci. 15(1):19–22.
  • Ishimaru T, Hirabayashi H, Sasaki K, Ye C, Kobayashi A. 2016. Breeding efforts to mitigate damage by heat stress to spikelet sterility and grain quality. Plant Prod Sci. 19(1):12–21.
  • Jagadish SVK, Cairns J, Lafitte R, Wheeler TR, Price AH, Craufurd PQ. 2010a. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci. 50(5):1633–1641.
  • Jagadish SVK, Craufurd PQ, Wheeler TR. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot. 58(7):1627–1635.
  • Jagadish SVK, Craufurd PQ, Wheeler TR. 2008. Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci. 48(3):1140–1146.
  • Jagadish SVK, Murty MVR, Quick WP. 2015. Rice responses to rising temperatures - challenges, perspectives and future directions. Plant, Cell Environ. 38(9):1686–1698.
  • Jagadish SVK, Raveendran M, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ. 2010b. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot. 61(1):143–156.
  • Jeong DH, Green PJ. 2013. The role of rice microRNAs in abiotic stress responses. J Plant Biol. 56(4):187–197.
  • Jian M, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Jin M, Zhou K, Zhang X, et al. 2015. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant-Microbe Interact. 28(5):558–568.
  • Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol Cell. 14(6):787–799.
  • Katiyar-Agarwal S, Agarwal M, Grover A. 2003. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol. 51(5):677–686.
  • Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, Gao ZQ, Noor H, Alam S. 2019. Mechanisms and adaptation strategies to improve heat tolerance in rice. A Review Plants. 8(11):508.
  • Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SVK, Kusolwa P, Rathinasabapathi B. 2018. Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci. 9:1578.
  • Kobayashi K, Matsui T, Murata Y, Yamamoto M. 2011. Percentage of dehisced thecae and length of dehiscence control pollination stability of rice cultivars at high temperatures. Plant Prod Sci. 14(2):89–95.
  • Korres NE, Norsworthy JK, Burgos NR, Oosterhuis DM. 2017. Temperature and drought impacts on rice production: an agronomic perspective regarding short- and long-term adaptation measures. Water Resour Rural Dev. 9:12–27.
  • Krishnan P, Ramakrishnan B, Reddy KR, Reddy VR. 2011. High-temperature effects on rice growth, yield, and grain quality. 1st ed. [place unknown]: Elsevier Inc.
  • Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N. 2017. Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One. 12(2):1–27.
  • Lang NT, Ha PTT, Tru PC, Toan TB, Buu BC, Cho Y-C. 2015. Breeding for heat tolerance rice based on marker-assisted backcrossing in Vietnam. Plant Breed Biotechnol. 3(3):274–281.
  • Li H, Chen Z, Hu M, Wang Z, Hua H, Yin C, Zeng H. 2011. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Plant Cell Rep. 30(9):1641–1659.
  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, et al. 2015. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet. 47(7):827–833.
  • Liao JL, Zhang HY, Shao XL, Zhong PA, Huang YJ. 2011. Identification for heat tolerance in backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice. Rice Sci. 18(4):279–286.
  • Lin CJ, Li CY, Lin SK, Yang FH, Huang JJ, Liu YH, Lur HS. 2010. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem. 58(19):10545–10552.
  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science. 319(5863):607–610.
  • Luo Y, Yin Z. 2013. Marker-assisted breeding of Thai fragrance rice for semi-dwarf phenotype, submergence tolerance and disease resistance to rice blast and bacterial blight. Mol Breed. 32(3):709–721.
  • Mackill DJ, Coffman WR, Rutger JN. 1982. Pollen Shedding and Combining Ability for High Temperature Tolerance in Rice. Crop Sci. 22(4):730–733.
  • Madan P, Jagadish SVK, Craufurd PQ, Fitzgerald M, Lafarge T, Wheeler TR. 2012. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J Exp Bot. 63(10):3843–3852.
  • Mamun EA, Cantrill LC, Overall RL, Sutton BG. 2005. Cellular organisation in meiotic and early post-meiotic rice anthers. Cell Biol Int. 29(11):903–913.
  • Mangrauthia SK, Agarwal S, Sailaja B, Sarla N, Voleti SR. 2016. Transcriptome analysis of Oryza sativa (Rice) seed germination at high temperature shows dynamics of genome expression associated with hormones signalling and abiotic stress pathways. Trop Plant Biol. 9(4):215–228.
  • Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanyam D. 2017. Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot. 68(9):2399–2412.
  • Matsui T, Omasa K. 2002. Rice (Oryza sativa L.) Cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot. 89(6):683–687.
  • Matsui T, Omasa K, Horie T. 2000. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci. 3(4):430–434.
  • Matsui T, Omasa K, Horie T. 2001. The difference in sterility due to high temperatures during the flowering period among Japonica-rice varieties. Plant Prod Sci. 4(2):90–93.
  • Matthews RB, Kropff MJ, Bachelet DD. 1995. Modeling the impact of climate change on rice production in Asia. Wallingford (CT): CAB International etc.
  • Matthews RB, Kropff MJ, Horie T, Bachelet D. 1997. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric Syst. 54(3):399–425.
  • Mickelbart MV, Hasegawa PM, Bailey-Serres J. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 16(4):237–251.
  • Mohammed AR, Tarpley L. 2009. Impact of high nighttime temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants. Crop Sci. 49(1):313–322.
  • Murakami T, Matsuba S, Funatsuki H, Kawaguchi K, Saruyama H, Tanida M, Sato Y. 2004. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol Breed. 13(2):165–175.
  • Nishiyama I. 1977. Decrease in germination activity of rice seeds due to excessive desiccation in storage. Japanese J Crop Sci. 46(1):111–118.
  • Nubankoh P, Wanchana S, Saensuk C, Ruanjaichon V, Cheabu S, Vanavichit A, Toojinda T, Malumpong C, Arikit S. 2020. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.). Plant Cell Rep. 39(1):149–162.
  • Oh-e I, Saitoh K, Kuroda T. 2007. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Prod Sci. 10(4):412–422.
  • Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Iván Ortiz-Monasterio J, Reynolds M. 2008. Climate change: can wheat beat the heat? Agric Ecosyst Environ. 126(1–2):46–58.
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, et al. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Pachauri R, Meyer L, editors. Geneva (Switzerland); p. 151.
  • Pareek A, Singla SL, Grover A. 1998. Plant Hsp90 family with special reference to rice. J Biosci. 23(4):361–367.
  • Peet MM, Willits DH, Gardner R. 1997. Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot. 48(1):101–111.
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG. 2004. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A. 101(27):9971–9975.
  • Poli Y, Basava RK, Panigrahy M, Vinukonda VP, Dokula NR, Voleti SR, Desiraju S, Neelamraju S. 2013. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice. 6(1):36.
  • Powell N, Ji X, Ravash R, Edlington J, Dolferus R. 2012. Yield stability for cereals in a changing climate. Funct Plant Biol. 39(7):539–552.
  • Prasad PVV, Bheemanahalli R, Jagadish SVK. 2017. Field crops and the fear of heat stress—Opportunities, challenges and future directions. F Crop Res. 200:114–121.
  • Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. F Crop Res. 95(2–3):398–411.
  • Prasanth VV, Babu MS, Basava RK, Tripura Venkata VGN, Mangrauthia SK, Voleti SR, Neelamraju S. 2017. Trait and marker associations in Oryza nivara and O. rufipogon derived rice lines under two different heat stress conditions. Front Plant Sci. 8:1819.
  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W. 2011. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett. 585(1):231–239.
  • Redona E, Manigbas N, Laza M, Sierra S, Bartolome V, Nora L, Barroga W, Noriel J. 2009. Identifying heat tolerant rice genotypes under different environments. SABRAO J Breeding Genetics. 41(special suppl.):Published in CD (1029–7073).
  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. 2002. MicroRNAs in plants. Genes Dev. 16(13):1616–1626.
  • Richards RA, Rebetzke GJ, Condon AG, Herwaarden AF. 2002. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci. 42(1):111–121.
  • Sailaja B, Anjum N, Vishnu Prasanth V, Sarla N, Subrahmanyam D, Voleti SR, Viraktamath BC, Mangrauthia SK. 2014. Comparative study of susceptible and tolerant genotype reveals efficient recovery and root system contributes to heat stress tolerance in rice. Plant Mol Biol Report. 32(6):1228–1240.
  • Sailaja B, Voleti SR, Gayatri S, Subrahmanyam D, Kumar RN, Rao PR, Meera SN. 2015. Vulnerability of rice yields under changed climatic conditions. Int J Agric Stat Sci. 11(2):523–526.
  • Sailaja B, Voleti SR, Subrahmanyam D, Raghuveer Rao P, Gayatri S, Nagarjuna Kumar R, Meera SN. 2019. Spatial rice decision support system for effective rice crop management. Curr Sci. 116(3):412–421.
  • Sakai M, Okamoto M, Tamura K, Kaji R, Mizobuchi R, Hirabayashi H, Yagi T, Nishimura M, Fukaura S. 2010. ‘Nikomaru’, A high-yielding rice variety with superior eating quality and grain appearance under high temperature during ripening. Bull Nat Agric Res Cen Kyushu Okinawa Reg. 54:43–61.
  • Satake T, Yoshida S. 1978. High temperature-induced sterility in indica rices at flowering. Japanese J Crop Sci. 47(1):6–17.
  • Scafaro AP, Gallé A, Van Rie J, Carmo-Silva E, Salvucci ME, Atwell BJ. 2016. Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytol. 211(3):899–911.
  • Scafaro AP, Haynes PA, Atwell BJ. 2010. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice. J Exp Bot. 61(1):191–202.
  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ. 2009. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot. 103(2):151–160.
  • Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K. 2011. Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci. 149(5):545–556.
  • Shamsudin NAA, Swamy BPM, Ratnam W, Sta. Cruz MT, Raman A, Kumar A. 2016. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet. 17(1):30.
  • Shanmugavadivel PS, Sv AM, Prakash C, Mk R, Tiwari R, Mohapatra T, Singh NK. 2017. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice. 10(1):28.
  • Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, et al. 2015. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol. 33(9):996–1003.
  • Shi W, Yin X, Struik PC, Xie F, Schmidt RC, Jagadish KSV. 2016. Grain yield and quality responses of tropical hybrid rice to high night-time temperature. F Crop Res. 190:18–25.
  • Sohn SO, Back K. 2007. Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol Plant. 51(2):340–342.
  • Sravan Raju N, Senguttuvel P, Voleti SR, Hari Prasad AS, Bhadana VP, Revathi P, Kemparaju KB, Ravi Chandran S, Singh AK, Koteswara Rao P, et al. 2013. Stability analysis of flowering and yield traits to high temperature stress adopting different planting dates in rice (O. sativa L.). Int J Agric Res. 8:137–148.
  • Sreenivasulu N, Butardo VM, Misra G, Cuevas RP, Anacleto R, Kishor PBK. 2015. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot. 66(7):1737–1748.
  • Tanamachi K, Miyazaki M, Matsuo K, Suriyasak C, Tamada A, Matsuyama K, Iwaya-Inoue M, Ishibashi Y. 2016. Differential responses to high temperature during maturation in heat-stress-tolerant cultivars of Japonica rice. Plant Prod Sci. 19(2):300–308.
  • Tao F, Hayashi Y, Zhang Z, Sakamoto T, Yokozawa M. 2008. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agric For Meteorol. 148(1):94–110.
  • Tenorio FA, Ye C, Redoña E, Sierra S, Laza M, Argayoso MA. 2013. Screening rice genetic resources for heat tolerance. Sabrao J Breed Genet. 45(3):371–381.
  • Thangapandian R, Jayaraj T, Redona ED, Sheryl S. 2010. Development of heat tolerant breeding lines and varieties in rice. Ind J Plant Genet Resour. 23(1):1–3.
  • Thanh PT, Phan PDT, Ishikawa R, Ishii T. 2010. QTL analysis for flowering time using backcross population between Oryza sativa Nipponbare and O. rufipogon. Genes Genet Syst. 85(4):273–279.
  • Udawela UAKS, Ananda GKS, Karunarathne SI, Sooriyapathirana SDSS, Li F, Liu Z. 2018. Development of heat tolerant introgression lines and preliminary quantitative trait loci (QTL) analysis at flowering stage in Oryza sativa L. J Natl Sci Found Sri Lanka. 46(3):253–270.
  • van Oort PAJ, Zwart SJ. 2018. Impacts of climate change on rice production in Africa and causes of simulated yield changes. Glob Chang Biol. 24(3):1029–1045.
  • Vivitha P, Raveendran M, Vijayalakshmi D. 2017. Introgression of QTLs controlling spikelet fertility maintains membrane integrity and grain yield in improved white ponni derived progenies exposed to heat stress. Rice Sci. 24(1):32–40.
  • Wang Y, Wang L, Zhou J, Hu S, Chen H, Xiang J, Yikai Z, Zeng Y, Shi Q, Zhu D, et al. 2019. Research Progress on Heat Stress of Rice at Flowering Stage. Rice Sci. 26(1):1–10.
  • Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S. 2009. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron. 102:91–133.
  • Weaich K, Bristow KL, Cass A. 1996. Modeling preemergent maize shoot growth: II. High temperature stress conditions. Agron J. 88(3):391–397.
  • Wei H, Liu J, Wang Y, Huang N, Zhang X, Wang L, Zhang J, Tu J, Zhong X. 2013. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 °C high temperature at seedling stage. J Hered. 104(2):287–294.
  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep. 28(1):21–30.
  • Wu YC, Chang SJ, Lur HS. 2016. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice. Plant Prod Sci. 19(1):145–153.
  • Xiao Y, Pan Y, Luo L, Zhang G, Deng H, Dai L, Liu X, Tang W, Chen L, Wang GL. 2011a. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica. 178(3):331–338.
  • Xiao Y-H, Pan Y, Luo L-H, Deng H-B, Zhang G-L, Tang W-B, Chen L-Y. 2011b. Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice (Oryza sativa). Rice Sci. 18(3):204–209.
  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. 2007. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 144(1):258–277.
  • Yamamoto Y, Tamori T, Kawaguchi S. 1985. Relations between weather and growth of rice plant. I. Effects of air-temperature on the growth of rice plant in the first half stage. Bull Toyama Agric Exp Stn. 16:20–26.
  • Ye C, Argayoso MA, Redoña ED, Sierra SN, Laza MA, Dilla CJ, Mo Y, Thomson MJ, Chin J, Delaviña CB, et al. 2012. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed. 131(1):33–41.
  • Ye C, Tenorio FA, Argayoso MA, Laza MA, Koh HJ, Redoña ED, Jagadish KSV, Gregorio GB. 2015a. Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet. 16(1):41.
  • Ye C, Tenorio FA, Redoña ED, Morales–Cortezano PS, Cabrega GA, Jagadish KSV, Gregorio GB. 2015b. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theor Appl Genet. 128(8):1507–1517.
  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. 2008. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta. 227(5):957–967.
  • Yoshida S. 1973. Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment. Soil Sci Plant Nutr. 19(4):299–310.
  • Yoshida S. 1978. Tropical climate and its influence on rice. IRRI Res Pap Ser.
  • Yoshida S. 1981. Fundamentals of rice crop science. Los Banos (Philippines): International Rice Research Institute.
  • Zafar SA, Hameed A, Khan AS, Ashraf M. 2017. Heat shock induced morpho-physiological response in indica rice (Oryza sativa L.) at early seedling stage. Pakistan J Bot. 49(2):453–463.
  • Zafar SA, Hussain M, Raza M, Muhu-Din Ahmed HG, Rana IA, Sadia B, Atif RM. 2016. Genome wide analysis of heat shock transcription factor (HSF) family in chickpea and its comparison with Arabidopsis. Plant Omics. 9(2):136.
  • Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam MR, Jin Q, Tao L, Fu G. 2018. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice. 11(1):1–12.
  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A. 114(35):9326–9331.
  • Zhu S, Huang R, Wai HP, Xiong H, Shen X, He H, Yan S. 2017. Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice. Physiol Mol Biol Plants. 23(4):817–825.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.