517
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Nitrate transport and assimilation in plants: a potential review

, , , , , & show all
Pages 133-150 | Received 29 Feb 2020, Accepted 16 Sep 2020, Published online: 13 Nov 2020

References

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN. 2005. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ. 28:500–512.
  • Almagro A, Lin SH, Tsay YF. 2008. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. Plant Cell. 20:3289–3299.
  • Antonacci S, Maggiore T, Ferrante A. 2007. Nitrate metabolism in plants under hypoxic and anoxic conditions. Plant Stress. 1(2):136–141.
  • Arkoun M, Sarda X, Jannin L, Laîné P, Etienne P, Garcia-Mina JM, Yvin JC, Ourry A. 2012. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.). J Exp Bot. 63:5245–5258.
  • Bertl A, Kaldenhoff R. 2007. Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS Lett. 581:5413–5417.
  • Bittsánszky A, Pilinszky K, Gyulai G, Komives T. 2015. Overcoming ammonium toxicity. Plant Sci. 231:184–190.
  • Bouguyon E, Brun F, Meynard D, Kubeš M, Pervent M, Leran S, Lacombe B, Krouk G, Guiderdoni E, Zažímalová E, et al. 2015. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants. 1:15015.
  • Bouguyon E, Gojon A, Nacry P. 2012. Nitrate sensing and signaling in plants. Sem Cell Dev Biol. 23:648–654.
  • Cai C, Wang JY, Zhu YG, Shen QR, Li B, Tong YP, Li ZS. 2008. Gene structure and expression of the high-affinity nitrate transport system in rice roots. J Integ Plant Biol. 50:443–451.
  • Campbell WH. 1999. Nitrate reductase structure, function and regulation. Ann Rev Plant Physiol Plant Mol Biol. 50:277–303.
  • Cao X, Ma Q, Zhong C, Yang X, Zhu L, Zhang J, Jin Q, Wu L. 2016. Elevational variation in soil amino acid and inorganic nitrogen concentrations in Taibai Mountain, China. PLoS ONE. 11(6):e0157979.
  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, et al. 2009. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J. 57:426–435.
  • Castro-Marin I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D. 2011. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta. 233:539–552.
  • Chaillou S, Rideout JW, Raper CD, Morot-Gaudry JF. 1994. Responses of soybean to ammonium and nitrate supplied in combination to the whole root system or separately in a split-root system. Physiol Plant. 90:259–268.
  • Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X. 2016. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol. 26:640–646.
  • Chopin F, Orsel M, Dorbe M-F, Chardon F, Truong H-N, Miller AJ, Krapp A, Daniel-Vedelea F. 2007. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell. 19:1590–1602.
  • Coskun D, Britto DT, Kronzucker HJ. 2016. The nitrogen-potassium intersection: membranes, metabolism, and mechanism. Plant Cell Environ. doi:https://doi.org/10.1111/pce.12671.
  • Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ. 2013. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiol. 163:1859–1867.
  • Crawford NM, Arst HNJ. 1993. The molecular genetics of nitrate assimilation in fungi and plants. Ann Rev Gen. 27:115–146.
  • Crawford RMM, Braendle R. 1996. Oxygen deprivation stress in a changing environment. J Exp Bot. 47:145–159.
  • David LC, Berquin P, Kanno Y, Seo M, Daniel-Vedele F, Ferrario-Méry S. 2016. N availability modulates the role of NPF3.1, a gibberellin transporter, in GA-mediated phenotypes in Arabidopsis. Planta. 244:1315–1328.
  • Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM, Koepsell H. 2003. A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci USA. 100:11753–11758.
  • Donaton MCV, Holsbeeks I, Lagatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM. 2003. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol. 50:911–929.
  • Fan SC, Lin CS, Hsu PK, Lin SH, Tsay YF. 2009. The Arabidopsis nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate. Plant Cell. 21:2750–2761.
  • Fan X, Feng H, Tan Y, Xu Y, Miao Q, Xu G. 2016a. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Int Plant Biol. 58:590–599.
  • Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G. 2016b. Overexpression of a pH sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA. 113:7118–7123.
  • Fang XZ, Tian WH, Liu XX, Lin XY, Jin CW, Zheng SJ. 2016. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. The New Phytol. 211:149–158.
  • Felle HH. 2006. Apo plastic pH during low-oxygen stress in Barley. Ann Bot. 98:1085–1093.
  • Feng H, Yan M, Fan X, Li B, Shen Q, Miller AJ, Xu G. 2011. Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot. 62:2319–2332.
  • Forde BG. 2000. Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta. 1465:219–235.
  • Forde BG. 2002. Local and long-range signaling pathways regulating plant responses to nitrate. Ann Rev Plant Biol. 53:203–224.
  • Forde BG. 2014. Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol. 21:30–36.
  • Fu Y, Yi H, Bao J, Gong J. 2015. LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato. FEBS Lett. 589:1072–1079.
  • Gaber RF, Ottow K, Andersen HA, Kielland-Brandt MC. 2003. Constitutive and hyperresponsive signaling by mutant forms of Saccharomyces cerevisiae amino acid sensor Ssy1. Eukaryotic Cell. 2:922–929.
  • Garnett T, Conn V, Plett D, Conn S, Zanghellini J, Mackenzie N, Enju A, Francis K, Holtham L, Roessner U, et al. 2013. The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytol. 198:82–94.
  • Garnett T, Plett D, Conn V, Conn S, Rabie H, Rafalski JA, Dhugga K, Tester MA, Kaiser BN. 2015. Variation for N uptake system in maize: genotypic response to N supply. Fron Plant Sci. 6:936.
  • Gaudin ACM, McClymont SA, Raizada MN. 2011. The nitrogen adaptation strategy of the wild teosinte ancestor of modern maize, Zea mays subsp parviglumis. Crop Sci. 51:2780–2795.
  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science. 327:812–818.
  • Gojon A. 2017. Nitrogen nutrition in plants: rapid progress and new challenges. J Exp Bot. 68:2457–2462.
  • Gojon A, Krouk G, Perrine-Walker F, Laugier E. 2011. Nitrate transceptor(s) in plants. J Exp Bot. 62:2299–2308.
  • Gojon A, Nacry P, Davidian JC. 2009. Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol. 12:328–338.
  • Gu C, Song A, Zhang X, Wang H, Li T, Chen Y, Jiang J, Chen F, Chen S. 2016. Cloning of chrysanthemum high affinity nitrate transporter family (CmNRT2) and characterization of CmNRT2.1. Sci Rep. 6:23462.
  • Guan P, Wang R, Nacry P, Breton G, Kay SA, Pruneda-Paz JL, Davani A, Crawford NM. 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc Natl Acad Sci USA. 111:15267–15272.
  • Guo FQ, Wang R, Chen M, Crawford NM. 2001. The Arabidopsis dual-affinity nitrate transporter gene atnrt1.1 (chl1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell. 13:1761–2177.
  • Gutiérrez RA, Gifford ML, Poultney C, Wang R, Shasha DE, Coruzzi GM, Crawford NM. 2007. Insights into the genomic nitrate response using genetics and the Sungear Software System. J Exp Bot. 58:2359–2367.
  • Hachiya T, Mizokami Y, Miyata K, Tholen D, Watanabe CK, Noguchi K. 2011. Evidence for a nitrate-independent function of the nitrate sensor NRT1.1 in Arabidopsis thaliana. J Plant Res. 124:425–430.
  • He X, Qu B, Li W, Zhao X, Teng W, Ma W, Ren Y, Li B, Li Z, Tong Y. 2015. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol. 169:1991–2005.
  • Ho CH, Lin SH, Hu HC, Tsay YF. 2009. CHL1 functions as a nitrate sensor in plants. Cell. 138:1184–1194.
  • Hoff T, Truong HN, Caboche M. 1994. The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ. 17:489–506.
  • Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Gen. 47:834–838.
  • Hu HC, Wang YY, Tsay YF. 2009. AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J. 57:264–278.
  • Huang NC, Chiang CS, Crawford NM, Tsay YF. 1996. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type–specific expression in roots. Plant Cell. 8:2183–2191.
  • Islam MS. 2019. Sensing and uptake of nitrogen in rice plant: a molecular view. Rice Sci. 26(6):343–355.
  • Jonassen EM, Lea US, Lillo C. 2008. HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta. 227:559–564.
  • Jones DL, Shannon D, Junvee-Fortune T, Farrar JF. 2005. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol Biochem. 37:179–181.
  • Kaiser WM, Huber SC. 2001. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot. 52:1981–1989.
  • Kaiser WM, Kandlbinder A, Stoimenova M, Glaab J. 2000. Discrepancy between nitrate reduction rates in intact leaves and nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ? Planta. 210:801–807.
  • Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M. 2012. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA. 109:9653–9658.
  • Kirscht A, Kaptan SS, Bienert GP, Chaumont F, Nissen P, de Groot BL, Kjellbom P, Gourdon P, Johanson U. 2016. Crystal structure of an ammonia-permeable aquaporin. PLoS Biol. 14(e1002411). doi:https://doi.org/10.1371/journal.pbio.1002411.
  • Kojima S, Bohner A, von Wirén N. 2006. Molecular mechanisms of urea transport in plants. J Membr Sci. 212:83–91.
  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Suter Grotemeyer M, Tegeder M, Rentsch D. 2008. AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol. 148:856–869.
  • Kotur Z, Glass AD. 2015. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high affinity nitrate influx in Arabidopsis thaliana. Plant Cell Environ. 38:1490–1502.
  • Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass AD. 2012. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. The New Phytol. 194:724–731.
  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Me´ Ry S, Meyer C, Daniel-Vedele F. 2014. Nitrate transport and signalling in Arabidopsis. J Exp Bot. 65:789–798.
  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova P, Tillard S, Leon LK. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Develop Cell. 18:927–937.
  • Krouk G, Tranchina D, Lejay L, Cruikshank AA, Shasha D, Coruzzi GM, Gutiérrez RA. 2009. A systems approach uncovers restrictions for signal interactions regulating genome-wide responses to nutritional cues in Arabidopsis. PLoS Comput Biol. 5:e1000326.
  • Laugier E, Bouguyon E, Mauriès A, Tillard P, Gojon A, Lejay L. 2012. Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. Plant Physiol. 158:1067–1078.
  • Lauter FR, Ninnemann O, Bucher M, Riesmeier JW, Frommer WB. 1996. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci USA. 93:8139–8144.
  • Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A. 1999. Molecular and functional regulation of two NO3− uptake systems by N and C status of Arabidopsis plants. Plant J. 18:509–519.
  • Léran S, Varala K, Boyer JC, Chiurazzi  M, Crawford  N, Vedele  FD, David  L, Dickstein  R, Fernandez  E, Forde  B, et al. 2014. A unified nomenclature  of nitrate transporter 1/peptide transporter family members in plants. Trends in Plant Sci. 19:5–9.
  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, et al. 2010. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell. 22:1633–1646.
  • Li W, Xiang F, Zhong M, Zhou L, Liu H, Li S, Wang X. 2017. Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis). Sci Rep. 7:1693–1705.
  • Li Y, Ouyang J, Wang YY, Hu R, Xia K, Duan J, Wang Y, Tsay YF, Zhang M. 2015. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep. 5:9635.
  • Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, et al. 2008. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell. 20:2514–2528.
  • Linkohr BI, Williamson LC, Fitter AH, Nitrate Leyser HM. 2002. Phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29:751–760.
  • Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE. 2005. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA. 102:13693–13698.
  • Liu KH, Tsay YF. 2003. Switching between the two actions modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. Embo J. 22:1005–1013.
  • Liu X, Huang D, Tao J, Miller AJ, Fan X, Xu G. 2014. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport. The New Phytol. 204:74–80.
  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, et al. 2013. Enhanced nitrogen deposition over China. Nature. 494:459–462.
  • Lorenz MC, Heitman J. 1998. The MEP2 ammonium permease regulates pseudo hyphal differentiation in Saccharomyces cerevisiae. Embo J. 17:1236–1247.
  • Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, Meyer C, Krapp A. 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun. 4:1713.
  • Meyer C, Stitt M. 2001. Nitrate reduction and signalling. In: Lea PJ, Morot-Gaudry JF, editors. Plant Nitrogen. Berlin: Springer-Verlag; p. 61–78.
  • Migocka M, Warzybok A, Papierniak A, Kłobus G. 2013. NO3-/H+ anti port in the tonoplast of cucumber root cells is stimulated by nitrate supply: evidence for a reversible nitrate-induced phosphorylation of vacuolar NO3-/H+ anti port. PLoS One. 8:e73972.
  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM. 2007. Nitrate transport and signalling. J Exp Bot. 58:2297–2306.
  • Moran-Zuloaga D, Dippold M, Glaser B, Kuzyakov Y. 2015. Organic nitrogen uptake by plants: re-evaluation by position-specific labelling of amino acids. Biogeochem. 125:359–374.
  • Morère-Le Paven MC, Viau L, Hamon A, Vandecasteele C, Pellizzaro A, Bourdin C, Laffont C, Lapied B, Lepetit M, Frugier F, et al. 2011. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula. J Exp Bot. 62:5595–5605.
  • Mounier E, Pervent M, Ljung K, Gojon A, Nacry P. 2014. Auxin mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ. 37:162–174.
  • Muños S, Cazettes C, Fizames C, Gaymard F, Tillard P, Lepetit M, Lejay L, Gojon A. 2004. Transcript profiling in the chl1–5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell. 16:2433–2447.
  • Nacry P, Bouguyon E, Gojon A. 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil. 370:1–29.
  • Näsholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytol. 182:31–48.
  • O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutiérrez RA. 2016. Nitrate transport, sensing, and responses in plants. Mol Plant. 9:837–856.
  • Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y. 2017. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants. 3:17029.
  • Okamoto M, Kumar A, Li W, Wang Y, Siddiqi MY, Nigel M, Crawford ADM, Glass. 2006. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-Like gene AtNRT3.1. Plant Physiol. 140:1036–1046.
  • Okamoto M, Vidmar JJ, Glass ADM. 2003. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol. 44:304–317.
  • Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. 2013. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat Comm. 4:2191.
  • Okamoto S, Tabata R, Matsubayashi Y. 2016. Long-distance peptide signaling essential for nutrient homeostasis in plants. Curr Opin Plant Biol. 34:35–40.
  • Orsel M, Boivin K, Roussel H, Thibault C, Krapp A, Daniel-Vedele F, Meyer C. 2005. Functional genomics of plant nitrogen metabolism. In: Leister D, editor. Plant functional genomics. Binghamton (NY): The Haworth Press; p. 431–450.
  • Orsel M, Krapp A, Daniel-Vedele F. 2002. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiol. 129:886–896.
  • Pantoja O. 2012. High affinity ammonium transporters: molecular mechanism of action. Front Plant Sci. 3:1–10.
  • Parinov S, Sevugan M, Ye D, Yang W-C, Kumaran M, Sundaresan V. 1999. Analysis of flanking sequences from Dissociation insertion lines: a data-base for reverse genetics in Arabidopsis. Plant Cell. 11:2263–2270.
  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U,  Mitros T, Poliakov A, et al. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature. 457:551–556.
  • Paulsen IT, Skurray RA. 1994. The POT family of transporter proteins. Trends Biochem Sci. 19:404.
  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI. 2008. Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA. 105:4524–4529.
  • Pellizzaro A, Clochard T, Planchet E, Limami AM, Morère Le Paven MC. 2015. Identification and molecular characterization of Medicago truncatula NRT2 and NAR2 families. Physiol Plant. 154:256–269.
  • Ping W, Wang Z, Cai R, LI Y, Chen X, Yin Y. 2011. Physiological and molecular response of wheat roots to nitrate supply in seedling stage. Agric Sci China. 10:695–704.
  • Plett D, Toubia J, Garnett T, Tester M, Kaiser BN, Baumann U. 2010. Dichotomy in the NRT Gene Families of Dicots and Grass Species. PLoS ONE. 5:e15289.
  • Price J, Laxmi A, Martin SK, Jang JC. 2004. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell. 16:2128–2150.
  • Rahayu YS, Walch-Liu P, Neumann G, Romheld V, von Wiren N, Bangerth F. 2005. Root-derived cytokinins as long-distance signals for NO3−-induced stimulation of leaf growth. J Exp Bot. 56:1143–1152.
  • Rana NK, Mohanpuria P, Kumar V, Yadav SKA. 2010. CsGS is regulated at transcriptional level during developmental stages and nitrogen utilization in Camellia sinensis (L.) O. Kuntze. Mol Biol Rep. 37:703–710.
  • Remans T, Nacry P, Pervent M, Filleur S, Diatloff E, Mounier E, Tillard P, Forde BG, Gojon A. 2006. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA. 103:19206–19211.
  • Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB. 1995. NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Letter. 370:264–268.
  • Ritchie RJ. 2006. Estimation of cytoplasmic nitrate and its electrochemical potential in barley roots using 13NO3- and compartmental analysis. New Phytol. 171:643–655.
  • Roy SJ, Negrão S, Tester M. 2014. Salt resistant crop plants. Curr Opin Biotech. 26:115–124.
  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR. 2009. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell. 21:3567–3584.
  • Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM. 2011. Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proc Natl Acad Sci USA. 108:18524–18529.
  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science. 326:1112–1115.
  • Stitt M. 1999. Nitrate regulation of metabolism and growth. Curr Opin Plant Biol. 2:178–186.
  • Sugiura M, Georgescu MN, Takahashi M. 2007. A nitrite transporter associated with nitrite uptake by higher plant chloroplasts. Plant Cell Physiol. 48:1022–1035.
  • Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. 2014. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science. 346:343–346.
  • Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa ICR, Zourelidou M, Regnault T, Crocoll C, Olsen CE, Weinstain R, et al. 2016. The Arabidopsis NPF3 protein is a GA transporter. Nat Commun. 7:11486.
  • Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G. 2012. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol. 160:2052–2063.
  • Taulemesse F, Le Gouis J, Gouache D, Gibon Y, Allard V. 2015. Post flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1. PLoS One. 10:e0120291.
  • Thornton B. 2004. Inhibition of nitrate influx by glutamine in Lolium perenne depends upon the contribution of the HATs to the total influx. J Exp Bot. 55:761–769.
  • Tobin AK, Stuart M, Ridley SM, Stewart GR. 1985. Changes in the activities of chloroplast and cytosolic isoenzymes of glutamine synthetase during normal leaf growth and plastid development in wheat. Planta. 163:544–548.
  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. 2007. Nitrate transporters and peptide transporters. FEBS Lett. 581:2290–2300.
  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM. 1993. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate inducible nitrate transporter. Cell. 72:705–713.
  • Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ. 1988. Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can J Bot. 66:2083–2097.
  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA. 2010. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA. 107:4477–4482.
  • von Wittgenstein NJ, Le CH, Hawkins BJ, Ehlting J. 2014. Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evolut Biol. 14:11.
  • Walch-Liu P, Forde BG. 2008. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture. Plant J. 54:820–828.
  • Wang Q, Zhao Y, Luo W, Li R, He Q, Fang X, Michele RD, Ast C, von Wire´ NN, Lin J. 2013. Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proc Natl Acad Sci USA. 110:13204–13209.
  • Wang R, Tischner R, Gutiérrez RA, Hoffman M, Xing X, Chen M, Chen M, Coruzzi G, Crawford NM. 2004. Genomic analysis of the`1 nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol. 136:2512–2522.
  • Wang R, Xing X, Wang Y, Tran A, Crawford NM. 2009. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol. 151:472–478.
  • Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Liu Y, Zhang Z, Wang H, et al. 2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell. 30:638–651.
  • Wang WH, Köhler B, Cao FQ, Liu GW, Gong YY, Sheng S, Song QC, Cheng XY, Garnett T, Okamoto M, et al. 2012a. Rice DUR3 mediates high affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol. 193:432–444.
  • Wang YY, Hsu PK, Tsay YF. 2012b. Uptake, allocation and signaling of nitrate. Tren Plant Sci. 17:458–467.
  • Wilkinson JQ, Crawford NM. 1991. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell. 3:461–471.
  • Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A. 2007. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. The J Biol Chem. 282:23541–23552.
  • Xia X, Fan X, Wei J, Feng H, Qu H, Xie D, Miller AJ, Xu G. 2015. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot. 66:317–331.
  • Yan M, Fan XR, Feng HM, Miller AJ, Shen QR, Xu GH. 2011. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ. 34:1360–1372.
  • Yong Z, Kotur Z, Glass AD. 2010. Characterization of an intact two component high-affinity nitrate transporter from Arabidopsis roots. The Plant J. 63:739–748.
  • Yuan L, Loque´ D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wire´ NN. 2007. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell. 19:2636–2652.
  • Zhang H, Forde BG. 1998. An Arabidopsis MADS box gene that controls nutrient induced changes in root architecture. Science. 279:407–409.
  • Zhang H, Jennings A, Barlow PW, Forde BG. 1999. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA. 96:6529–6534.
  • Zhou JJ, Theodoulou FL, Muldin I, Ingemarsson B, Miller AJ. 1998. Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem. 273:12017–12023.
  • Zifarelli G, Pusch M. 2010. CLC transport proteins in plants. FEBS Lett. 584:2122–2127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.