261
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Algorithms for forecasting cotton yield based on climatic parameters in Brazil

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 984-1001 | Received 25 May 2020, Accepted 13 Dec 2020, Published online: 30 Dec 2020

References

  • Ahamed ATMS, Mahmood NT, Hossain N, Kabir MT, Das K, Rahman F, Rahman RM 2015. Applying data mining techniques to predict annual yield of major crops and recommend planting different crops in different districts in Bangladesh. In: 2015 IEEE/ACIS 16th Int Conf Softw Eng Artif Intell Netw Parallel/Distributed Comput. [place unknown], v.1; p. 1–6.
  • Akbar A, Kuanar A, Patnaik J, Mishra A, Nayak S. 2018. Application of Artificial Neural Network modeling for optimization and prediction of essential oil yield in turmeric (Curcuma longa L.). Computers and Electronics in Agriculture. 148:160–178. http://www.sciencedirect.com/science/article/pii/S0168169916311371. doi:https://doi.org/10.1016/j.compag.2018.03.002
  • Allen RG, PL S, Raes D, Martin S. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrig Drain Pap. 56: 1–15. by Richard G. Allen … [et al.].
  • Alvares CA, Stape JL, Sentelhas PC, de Moraes JL, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 22(6):711–728. doi:https://doi.org/10.1127/0941-2948/2013/0507.
  • AS de AJ, Silva FAM, de Lima MG, Amaral AB. 2009. Climatic aptitude zoning for cotton in Piaui State, Brazil. Rev Ciência Agronômica. 40(2):175.
  • Assad ED, Martins SC, Beltrão NEDM, Pinto HS. 2013. Impacts of climate change on the agricultural zoning of climate risk for cotton cultivation in Brazil. Pesquisa Agropecuária Brasileira. 48(1):1–8. doi:https://doi.org/10.1590/S0100-204X2013000100001.
  • Barros MAL, Silva CRCD, Lima LMD, Farias FJC, Ramos GA, Santos RCD. 2020. A Review on Evolution of Cotton in Brazil: GM, White, and Colored Cultivars. Journal of Natural Fibers. 1–13. doi:https://doi.org/10.1080/15440478.2020.1738306.
  • Batista CH, de Aquino LA, Silva TR, Silva HRF. 2010. Growth and productivity of cotton culture in response to phosphorus application and irrigation methods. Rev Bras Agric Irrig. 4:4.
  • Bezerra JRC, Luz SE, Pereira MJ, Santana JR, Dias JCF, Santos JM, Santos JW, Silva T. 2003. Effect of soil water deficit on yield and fiber of herbaceous cotton, cultivar BRS 201. Revista Brasileira De Oleaginosas E Fibrosas. 7(2/3):p.727–734. [ Campina Grande, v.7, n.2]. .
  • Bhojani SH, Bhatt N. 2020. Wheat crop yield prediction using new activation functions in neural network. Neural Comput Appl. 1:1–11.
  • Biswas R, Bhattacharyya B. 2019. Rice yield prediction in lower Gangetic Plain of India through multivariate approach and multiple regression analysis. J Agrometeorol. 21(1):101–103.
  • Chen X, Qi Z, Gui D, Sima MW, Zeng F, Li L, Li X, Gu Z. 2020. Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate. Agricultural Water Management. 234:106139. doi:https://doi.org/10.1016/j.agwat.2020.106139.
  • Chou J, Xu Y, Dong W, Xian T, Wang Z. 2019. Research on the variation characteristics of climatic elements from April to September in China’s main grain-producing areas. Theoretical and Applied Climatology. 137(3–4):3197–3207. doi:https://doi.org/10.1007/s00704-019-02795-y.
  • CONAB (Companhia Nacional Do Abastecimento). 2019. [access date 02 Febuary 2020]. www.conab.gov.br
  • de O ALE, GB T, DZ M, de MKC, da SC de MJR. 2020. Modeling safrinha corn productivity according to climatic conditions in Mato Grosso do Sul. Rev Bras Climatol. 26.
  • Doorenbos J, Kassam AH. 1979. Yield response to water. Irrig Drain Pap. 33:257.
  • Draper NR, Smith H. 1980. Applied Regression Analysis, 2nd Edn. Chap. 1, v.3.
  • Elavarasan D, Vincent DR, Sharma V, Zomaya AY, Srinivasan K. 2018. Forecasting yield by integrating agrarian factors and machine learning models: A survey. Computers and Electronics in Agriculture. October, 155:257–282. doi:https://doi.org/10.1016/j.compag.2018.10.024.
  • Everingham Y, Sexton J, Skocaj D, Inman-Bamber G. 2016. Accurate prediction of sugarcane yield using a random forest algorithm. Agronomy for Sustainable Development. 36(2):27. doi:https://doi.org/10.1007/s13593-016-0364-z.
  • Feng A, Zhou J, Vories ED, Sudduth KA, Zhang M. 2020. Yield estimation in cotton using UAV-based multi-sensor imagery. Biosystems Engineering. 193:101–114. http://www.sciencedirect.com/science/article/pii/S1537511020300544.doi:https://doi.org/10.1016/j.biosystemseng.2020.02.014
  • Gonzalez-Sanchez A, Frausto-Solis J, Ojeda-Bustamante W. 2014. Attribute selection impact on linear and nonlinear regression models for crop yield prediction. Sci World J. 7:2014.
  • Goyal MK. 2014. Modeling of sediment yield prediction using M5 model tree algorithm and wavelet regression. Water Resources Management. 28(7):1991–2003. doi:https://doi.org/10.1007/s11269-014-0590-6.
  • Griddi-Papp IL. 1965. Botany and Genetics. editor. Cotton Culture and Fertilization. São Paulo:Brazilian Institute of Potash;pp.117–157.
  • Gyamerah SA, Ngare P, Ikpe D. 2020. Probabilistic forecasting of crop yields via quantile random forest and Epanechnikov Kernel function. Agricultural and Forest Meteorology. 280:107808. doi:https://doi.org/10.1016/j.agrformet.2019.107808.
  • Hansen JW. 2004. Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. . Agricultural and Forest Meteorology. 125(1–2):143–157. doi:https://doi.org/10.1016/j.agrformet.2004.02.006.
  • Hussain M, Tariq AF, Nawaz A, Nawaz M, Sattar A, Ul-Allah S, Wakeel A, Farooq S. 2020. Efficacy of fertilizing method for different potash sources in cotton (Gossypium hirsutum L.) nutrition under arid climatic conditions. PLoS One. 15(1):1–9. doi:https://doi.org/10.1371/journal.pone.0228335.
  • IBGE G. 2020. Sistema IBGE de recuperação automática: SIDRA. Banco De Dados Agregados. http://www.sidra.ibge.gov.br/bda/tabela/protabl.asp.
  • Iqbal M, Ul-Allah S, Naeem M, Ijaz M, Sattar A, Sher A. 2017. Response of cotton genotypes to water and heat stress: from field to genes. Euphytica. 213(6):1–11. doi:https://doi.org/10.1007/s10681-017-1916-2.
  • Kaul M, Hill RL, Walthall C. 2005. Artificial neural networks for corn and soybean yield prediction. Agricultural Systems. 85(1):1–18. doi:https://doi.org/10.1016/j.agsy.2004.07.009.
  • Krige DG. 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J South African Inst Min Metall. 52(6):119–139.
  • Lasdon LS, Waren AD. 1982. General reduced gradient software for linearly and non-linearly contained problems. Austin: GRG2 users Guid Univ Texas.
  • Li L, Baker TE, White SR, Burke K. 2016. Pure density functional for strong correlation and the thermodynamic limit from machine learning. Physical Review B. 94(24):245129. others. doi:https://doi.org/10.1103/PhysRevB.94.245129.
  • Li N, Lin H, Wang T, Li Y, Liu Y, Chen X, Hu X. 2020. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Research. 247:107590. doi:https://doi.org/10.1016/j.fcr.2019.107590.
  • Li P. 2012. Robust logitboost and adaptive base class (abc) logitboost. arXiv Prepr arXiv. 8:12033491.
  • Marcari MA, de S RG, de O. ALE. 2015. Agrometeorological models for forecasting yield and quality of sugarcane. Aust J Crop Sci. 9(11):1049–1056.
  • Marengo JA, Tomasella J, Nobre CA. 2017. Climate change and water resources. Waters of Brazil: Springer; p. 171–186. [place unknown]
  • Martins E, de Oliveira Aparecido LE, Santos LPS, JMA DM, de Souza PS. 2015. Weather influence in yild and quality coffee produced in South Minas Gerais region. Coffee Sci. 10(4):499–506.
  • Marur CJ. 1991. Comparison of rates of liquid photosynthesis, stomatal resistance and yield of two cotton cultivars submitted to water stress. Pesquisa Agropecuaria Brasileira. 26:153–161.
  • Mercante E, Lima LEPD, Justina DDD, Uribe-Opazo MA, Lamparelli RAC. 2012. Detection of soybean planted areas through orbital images based on culture spectral dynamics. Engenharia Agrícola. 32(5):920–931. doi:https://doi.org/10.1590/S0100-69162012000500011.
  • Brasil.1981. Ministry of Mines and Energy. General secretary. RADAMBRASIL Project. Rio De Janeiro: Survey of Natural Resources, 25, 29, 31.
  • Moreto VB, de Souza Rolim G, Zacarin BG, Vanin AP, de Souza LM, Latado RR. 2017. Agrometeorological models for forecasting the qualitative attributes of “Valência” oranges. Theor Appl Climatol. 130(3–4):847–864. doi:https://doi.org/10.1007/s00704-016-1920-9.
  • Nayakekorala H, Taylor HM. 1990. Phosphorus uptake rates of cotton roots at different growth stages from different soil layers. Pant Soil. 122:105–110.
  • O ALED, de S RG, SC DMJRD, HG R, GHE L, PS S. 2018. Agroclimatic zoning for urucum crops in the state of Minas Gerais, Brazil. Bragantia. 77(1):193–200.
  • Opelt A, Fussenegger M, Pinz A, Auer P. 2004. Weak hypotheses and boosting for generic object detection and recognition. Eur Conf Comput Vis. 8:71–84. [place unknown].
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res. 12: 2825–2830. others.
  • Quinlan JR. 1983. Learning Efficient Classification Procedures and Their Application to Chess End Games. In: Michalski RS, Carbonell JG, Mitchell TM, editors. Mach Learn An Artif Intell Approach [Internet]. Berlin (Heidelberg): Springer Berlin Heidelberg; p. 463–482. doi:https://doi.org/10.1007/978-3-662-12405-5_15
  • Rahimi J, Khalili A, Butterbach‐Bahl K. 2019. Projected changes in modified Thornthwaite climate zones over Southwest Asia using a CMIP5 multi-model ensemble. . International Journal of Climatology. 39(12):4575–4594. doi:https://doi.org/10.1002/joc.6088.
  • Rehman TU, Mahmud MS, Chang YK, Jin J, Shin J. 2019. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture. 156:585–605. doi:https://doi.org/10.1016/j.compag.2018.12.006.
  • Rosolem CA. 2007. Maximum soybean productivity. Rondonópolis: Foundation MT; p. p.237–244.
  • Sahoo S, Russo TA, Elliott J, Foster I. 2017. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resources Research. 53(5):3878–3895. doi:https://doi.org/10.1002/2016WR019933.
  • Schwalbert RA, Amado T, Corassa G, Pott LP, Prasad PVV, Ciampitti IA. 2020. Satellite-based soybean yield forecast: integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology. 284:107886. doi:https://doi.org/10.1016/j.agrformet.2019.107886.
  • Shekoofa A, Emam Y, Shekoufa N, Ebrahimi M, Ebrahimie E, Anisimova M. 2014. Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture. PLoS One. 9(5):e97288. doi:https://doi.org/10.1371/journal.pone.0097288.
  • Silva KA, de Souza Rolim G, Valeriano TTB, da Silva Cabral de Moraes JR. 2020. Influence of El Niño and La Niña on coffee yield in the main coffee-producing regions of Brazil. Theoretical and Applied Climatology. 139(3–4):1019–1029. others. doi:https://doi.org/10.1007/s00704-019-03039-9.
  • Singh RK. 2008. Artificial neural network methodology for modelling and forecasting maize crop yield. Agric Econ Res Rev. 21((347–2016–16813)):5–10.
  • Thomas J, Mayr A, Bischl B, Schmid M, Smith A, Hofner B. 2018. Gradient boosting for distributional regression: faster tuning and improved variable selection via noncyclical updates. Statistics and Computing. 28(3):673–687. doi:https://doi.org/10.1007/s11222-017-9754-6.
  • Thornthwaite CW. 1948. An approach toward a rational classification of climate. Royal Society, London: LWW.
  • Thornthwaite CW, Mather JR. 1955. Publications in climatology. Water Balanc. 8:1–104.
  • Tollenaar M, Fridgen J, Tyagi P, Stackhouse PW, Kumudini S. 2017. The Contribution of Solar Brightening to the US Maize Yield Trend. Nature Climate Change. 7:275–278. doi:https://doi.org/10.1038/nclimate3234.
  • Torkashvand AM, Ahmadi A, Nikravesh NL. 2017. Prediction of kiwifruit firmness using fruit mineral nutrient concentration by artificial neural network (ANN) and multiple linear regressions (MLR). Journal of Integrative Agriculture. 16(7):1634–1644. doi:https://doi.org/10.1016/S2095-3119(16)61546-0.
  • Veenadhari S, Mishra B, Singh CD. 2011. Soybean productivity modelling using decision tree algorithms. Int J Comput Appl. 27(7):11–15.
  • Veenadhari S, Misra B, Singh CD 2014. Machine learning approach for forecasting crop yield based on climatic parameters. In: 2014 Int Conf Comput Commun Informatics. [place unknown], v.4; p. 1–5.
  • Wrege MS, Caramori PH, Gonçalves SL, Almeida WPD, Marur CJ, Pires JR, R S. Y. 2000. Cotton zoning based on sowing periods of lower risk in Parana state, Brazil. Brazilian Arch Biol Technol. 43(1). doi:https://doi.org/10.1590/S1516-89132000000100010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.