317
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Changes in enzyme activities, microbial biomass, and basal respiration of a sandy loam soil upon long-term exposure to Pb levels

, &
Pages 1049-1061 | Received 01 Jun 2020, Accepted 14 Dec 2020, Published online: 08 Jan 2021

References

  • Abdelmagid H, Tabatabai M. 1987. Nitrate reductase activity of soils. Soil Biol Biochem. 19(4):421–427.
  • Akmal M. 2005. Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution. J Environ Sci. 17(5):802–807.
  • Aliasgharzad N, Molaei A, Oustan S. 2011. Pollution induced community tolerance (PICT) of microorganisms in soil incubated with different levels of Pb. World Acad Sci Eng Technol. 5:12–20.
  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amézaga I, Garbisu C. 2003. Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18(1):65–73.
  • Bååth E. 1989. Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut. 47(3–4):335–379.
  • Babich H, Stotzky G. 1985. Heavy metal toxicity to microbe-mediated ecologic processes: A review and potential application to regulatory policies. Environ Res. 36(1):111–137.
  • Brookes P, Heijnen CE, McGrath S, Vance E. 1986. Soil microbial biomass estimates in soils contaminated with metals. Soil Biol Biochem. 18(4):383–388.
  • Bundy L, Bremner J. 1972. A simple titrimetric method for determination of inorganic carbon in soils. Soil Sci Soc Am J. 36(2):273–275.
  • Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M. 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol. 64:7–14.
  • Díaz-Raviña M, Bååth E. 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol. 62(8):2970–2977.
  • Díaz-Raviña M, De Anta RC, Bååth E. 2007. Tolerance (PICT) of the bacterial communities to copper in vineyards soils from Spain. J Environ Qual. 36(6):1760–1764.
  • Eivazi F, Tabatabai M. 1988. Glucosidases and galactosidases in soils. Soil Biol Biochem. 20(5):601–606.
  • Frostegård Å, Tunlid A, Bååth E. 1996. Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem. 28(1):55–63.
  • Fu M, Tabatabai M. 1989. Nitrate reductase activity in soils: effects of trace elements. Soil Biol Biochem. 21(7):943–946.
  • Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, editor. Methods of soil analysis: part 1: physical and mineralogical methods. 2nd ed. Madison (WI): Soil Science Society of America Inc; p. 383–411.
  • Gianfreda L, Rao MA, Piotrowska A, Palumbo G, Colombo C. 2005. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ. 341(1):265–279.
  • Giller KE, Witter E, McGrath SP. 1999. Assessing risks of heavy metal toxicity in agricultural soils: do microbes matter? Hum Ecol Risk Assess. 5(4):683–689.
  • Gómez-Sagasti MT, Alkorta I, Becerril JM, Epelde L, Anza M, Garbisu C. 2012. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut. 223(6):3249–3262.
  • Haddad S, Lemanowicz J, El-Azeim MA. 2019. Cellulose decomposition in clay and sandy soils contaminated with heavy metals. Int J Environ Sci Technol. 16(7):3275–3290.
  • Hassan W, Akmal M, Muhammad I, Younas M, Zahaid KR, Ali F. 2013. Response of soil microbial biomass and enzymes activity to cadmium (Cd) toxicity under different soil textures and incubation times. Aust J Crop Sci. 7(5):674.
  • Isermeyer H. 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden [A simple method to determine soil respiration and soil carbonates]. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde. 56(1–3):26–38. German.
  • Jäggi W 1976. Die Bestimmung der CO2-Bildung als Maß der bodenbiologischen Aktivität [Evaluation of CO2 formation as an estimation of soil biological activity]. Schw Landw Forschung. 15: 371–380. German
  • Kandeler E, Tscherko D, Bruce K, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W. 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32(5):390–400.
  • Kandeler F, Kampichler C, Horak O. 1996. Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23(3):299–306.
  • Kelly J, Häggblom M, Tate Iii R. 1999. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem. 31(10):1455–1465.
  • Leita L, De Nobili M, Muhlbachova G, Mondini C, Marchiol L, Zerbi G. 1995. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol Fertil Soils 19(2–3):103–108.
  • Liao M, Luo Y-K, Zhao X-M, Huang C-Y. 2005. Toxicity of cadmium to soil microbial biomass and its activity: effect of incubation time on Cd ecological dose in a paddy soil. J Zhejiang Univ Sci B. 6(5):324.
  • Martinez-Salgado M, Gutiérrez-Romero V, Jannsens M, Ortega-Blu R. 2010. Biological soil quality indicators: a review. In: Méndez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. 2nd ed. Badajoz (Spain): Formatex; p. 319–328.
  • McGarity J, Myers MG. 1967. A survey of urease activity in soils of northern New South Wales. Plant Soil 27(2):217–238.
  • Nannipieri P. 1994. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst CE, Double BM, Gupta VVSR, Grace PR, editors. Soil biota: management in sustainable farming systems. East Melbourne (Asutralia): CSIRO; p. 238–244.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME, editors. Methods of soil analysis part 3: chemical methods. 1st ed. Madison (WI): Soil Science Society of America; p. 961–1010.
  • Nelson DW, Sommers LE. 1983. Methods of soil analysis, part 2: chemical and microbiological properties. In: Page AL, editor. Chapter 29; total carbon, organic carbon, and organic matter. 2nd ed. Madison (WI): Soil Science Society of America Inc; p. 539–579
  • Olsen SR, Sommers LE. 1982. Phosphorus. In: Page AL, Miller RH, Keeney DR, editors. Methods of soil analysis Part 2: chemical and microbiological properties. 2nd ed. Madison (WI): American Society of Agronomy; p. 403–430.
  • Pant H, Warman P. 2000. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol Fertil Soils 30(4):306–311.
  • Piotrowska-Seget Z, Cycoń M, Kozdroj J. 2005. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol. 28(3):237–246.
  • Rajapaksha R, Tobor-Kapłon M, Bååth E. 2004. Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol. 70(5):2966–2973.
  • Renella G, Chaudri A, Brookes P. 2002. Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity. Soil Biol Biochem. 34(1):121–124.
  • Renella G, Ortigoza AR, Landi L, Nannipieri P. 2003. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biol Biochem. 35(9):1203–1210.
  • Rhine E, Mulvaney R, Pratt E, Sims G. 1998. Improving the berthelot reaction for determining ammonium in soil extracts and water. Soil Sci Soc Am J. 62(2):473–480.
  • Roane T, Kellogg S. 1996. Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol. 42(6):593–603.
  • Romero-Freire A, Aragón MS, Garzón FM, Peinado FM. 2016. Is soil basal respiration a good indicator of soil pollution? Geoderma 263:132–139.
  • Sardar K, Qing C, Hesham AE-L, Yue X, He J-Z. 2007. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J Environ Sci. 19(7):834–840.
  • Šmejkalová M, Mikanova O, Boruvka L. 2003. Effects of heavy metal concentrations on biological activity of soil micro-organisms. Plant Soil Environ. 49(7):321–326.
  • Simona C, Angela RF, de Santo Amalia V. 2004. Suitability of soil microbial parameters as indicators of heavy metal pollution. Water Air Soil Pollut. 158(1):21–35.
  • Sobolev D, Begonia M. 2008. Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health. 5(5):450–456.
  • Sparling G, West AW. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biol Biochem. 20(3):337–343.
  • Tang J, Zhang J, Ren L, Zhou Y, Gao J, Luo L, Yang Y, Peng Q, Huang H, Chen A. 2019. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J Environ Manage. 242:121–130.
  • Vig K, Megharaj M, Sethunathan N, Naidu R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res. 8(1):121–135.
  • Wakelin S, Gerard E, Black A, Hamonts K, Condron L, Yuan T, van Nostrand J, Zhou J, O’Callaghan M. 2014. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. Environ Pollut. 190:1–9.
  • Xiao X-Y, Wang M-W, Zhu H-W, Guo Z-H, Han X-Q, Zeng P. 2017. Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicol Environ Saf. 142:200–206.
  • Xu Y, Seshadri B, Bolan N, Sarkar B, Ok YS, Zhang W, Rumpel C, Sparks D, Farrell M, Hall T. 2019. Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environ Int. 125:478–488.
  • Yang J, Yang F, Yang Y, Xing G, Deng C, Shen Y, Luo L, Li B, Yuan H. 2016. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ Pollut. 213:760–769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.