1,596
Views
15
CrossRef citations to date
0
Altmetric
Review Article

The challenge of drought stress for grain legumes and options for improvement

&
Pages 1601-1618 | Received 13 Sep 2020, Accepted 17 Mar 2021, Published online: 29 Mar 2021

References

  • Abdel-Haleem H, Lee GJ, Boerma RH. 2011. Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet. 122(5):935–946. doi:10.1007/s00122-010-1500-9.
  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LS. 2017. The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep. 36(7):1009–1025. doi:10.1007/s00299-017-2119-y.
  • Ajayi AT, Gbadamosi AE, Olumekun VO. 2018. Screening for drought tolerance in cowpea (Vigna unguiculata L. Walp) at seedling stage under screen house condition. Int J BioSci Technol. 11:1–10. doi:10.5897/JPBCS2018.0768
  • Aliasgharzad N, Neyshabouri MR, Salimi G. 2006. Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia. 61(S19):S324–S328. doi:10.2478/s11756-006-0182-x.
  • Aroca R, Porcel R, Ruiz‐Lozano JM. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol. 173(4):808–816. doi:10.1111/j.1469-8137.2006.01961.x.
  • Arrese-Igor C. 1999. Sucrose synthatse and nodule nitrogen fixation under drought and other environmental stresses. Symbiosis. 27:189–212.
  • Asseng S, Van Herwaarden AF. 2003. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil. 256(1):217–229. doi:10.1023/A.1026231904221.
  • Augé RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza. 11(1):3–42. doi:10.1007/s005720100097.
  • Awari VR, Mate SN. 2015. Effect of drought stress on early seedling growth of chickpea (Cicer arietinum L.) genotypes. Life Sci Int Res J. 2:356–361.
  • Babu K, Rosaiah G. 2017. A study on germination and seedling growth of black gram (Vigna mungo L. Hepper) germplasm against Polyethylene glycol 6000 stress. IOSR J Pharm Biol Sci. 5:90–98. doi:10.9790/3008-1205029098
  • Bangar P, Chaudhury A, Tiwari B, Kumar S, Kumari R, Bhat KV. 2019. Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk J Biol. 43:58–69. doi:10.3906/biy-1801-64
  • Batieno BJ, Danquah E, Tignegre JB, Huynh BL, Drabo I, Close TJ, Ofori K, Roberts P, Ouedraogo TJ. 2016. Application of marker-assisted backcrossing to improve cowpea (Vigna unguiculata L. Walp) for drought tolerance. J Plant Breed Crop Sci. 8(12):273–286. doi:10.5897/JPBCS2016.0607.
  • Behboudian MH, Ma Q, Turner NC, Palta JA. 2001. Reactions of chickpea to water stress: yield and seed composition. J Sci Food Agric. 81(13):1288–1291. doi:10.1002/jsfa.939.
  • Belachew KY, Nagel KA, Fiorani F, Stoddard FL. 2018. Diversity in root growth responses to moisture deficit in young faba bean (Vicia faba L.) plants. PeerJ. 6:e4401. doi:10.7717/peerj.4401
  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. 2009. Rhizosphere bacteria containing 1‐aminocyclopropane‐1‐carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181(2):413–423. doi:10.1111/j.1469-8137.2008.02657.x.
  • Bellaloui N, Hu Y, Mengistu A, Kassem MA, Abel CA. 2013. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants. Front Plant Sci. 4:270. doi:10.3389/fpls.2013.00270
  • Bellaloui N, Mengistu A. 2015. Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities. Sci World J. 2015:407872. doi:10.1155/2015/407872
  • Bharadwaj N, Barthakur S, Biswas AD, Das MK, Kour M, Ramteke A, Gogoi N. 2019. Transcript expression profiling in two contrasting cultivars and molecular cloning of a SKP-1 like gene, a component of SCF-ubiquitin proteasome system from mungbean Vigna radiate L. Sci Rep. 9(1):8103. doi:10.1038/s41598-019-44034-4.
  • Biederman LA, Harpole WS. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB Bioenergy. 5(2):202–214. doi:10.1111/gcbb.12037.
  • Briñez B, Perseguini JM, Rosa JS, Bassi D, Gonçalves JG, Almeida C, Paulino JF, Blair MW, Chioratto AF, Carbonell SA, et al. 2017. Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers. Genet Mol Biol. 40:813–823. doi:10.1590/1678-4685-GMB-2016-0222
  • Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH. 2005. Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol. 5(1):16. doi:10.1186/1471-2229-5-16.
  • Chauhan YS, Ryan M, Chandra S, Sadras VO. 2019. Accounting for soil moisture improves prediction of flowering time in chickpea and wheat. Sci Rep. 9(1):7510. doi:10.1038/s41598-019-43848-6.
  • Chen Y, Djalovic I, Rengel Z. 2015. Phenotyping for root traits. In: Kumar J, Pratap A, Kumar S, editors. Phenomics of Crop Plants: Trends, Options and Limitations. Springer, New Delhi, India; p. 101–128
  • Chowdhury JA, Karim MA, Khaliq QA, Ahmed AU, Khan MS. 2016. Effect of drought stress on gas exchange characteristics of four soybean genotypes. Bangladesh J Agric Res. 41(2):195–205. doi:10.3329/bjar.v41i2.28215.
  • Daryanto S, Wang L, Jacinthe PA. 2015. Global synthesis of drought effects on food legume production. PloS One. 10(6):e0127401. doi:10.1371/journal.pone.0127401.
  • Das A, Rushton P, Rohila J. 2017. Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants. 6:21. doi:10.3390/plants6020021
  • De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P, et al. 2012. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Biochem. 61:115–122. doi:10.1016/j.plaphy.2012.09.009
  • De Souza PI, Egli DB, Bruening WP. 1997. Water stress during seed filling and leaf senescence in soybean. Agron J. 89(5):807–812. doi:10.2134/agronj1997.00021962008900050015x.
  • Dimkpa C, Weinand T, Asch F. 2009. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ. 32(12):1682–1694. doi:10.1111/j.1365-3040.2009.02028.x.
  • Du Y, Zhao Q, Chen L, Yao X, Xie F. 2020. Effect of drought stress at reproductive stages on growth and nitrogen metabolism in soybean. Agronomy. 10(2):302. doi:10.3390/agronomy10020302.
  • Duc G, Agrama H, Bao S, Berger J, Bourion V, De Ron AM, Gowda CL, Mikic A, Millot D, Singh KB, et al. 2015. Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit Rev Plant Sci. 34(1–3):381–411. doi:10.1080/07352689.2014.898469.
  • Duc G, Marget P, Esnault R, Le Guen J, Bastianelli D. 1999. Genetic variability for feeding value of faba bean seeds (Vicia faba): comparative chemical composition of isogenics involving zero-tannin and zero-vicine genes. J Agric Sci. 133(2):185–196. doi:10.1017/S0021859699006905.
  • Dwivedi SL, Nigam SN, Rao RN, Singh U, Rao KV. 1996. Effect of drought on oil, fatty acids and protein contents of groundnut (Arachis hypogaea L.) seeds seeds. Field Crop Res. 48(2–3):125–133. doi:10.1016/S0378-4290(96)01027-1.
  • Dwivedi SL, Siddique KHM, Farooq M, Thornton PK, Ortiz R. 2018. Using Biotechnology-led approaches to uplift cereal and food legume yields in dryland environments. Front Plant Sci. 9:1249. doi:10.3389/fpls.2018.01249.
  • El-Beltagi HS, Mohamed HI, Sofy MR. 2020. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules. 25(7):1702. doi:10.3390/molecules25071702.
  • El-Naggar A, Lee SS, Rinklebe J, Farooq M, Song H, Sarmah AK, Zimmerman AR, Ahmad M, Shaheen SM, Ok YS. 2019. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma. 337:536–554. doi:10.1016/j.geoderma.2018.09.034
  • El-Soud WA, Hegab MM, AbdElgawad H, Zinta G, Asard H. 2013. Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol Biochem. 71:173–183. doi:10.1016/j.plaphy.2013.07.007
  • Erdemci I. 2018. Evaluation of drought tolerance selection indices using grain yield in chickpea (Cicer arietinum L.). Notulae Scientia Biologicae. 10(3):439–446. doi:10.15835/nsb10310291.
  • Fang C, Li W, Li G, Wang Z, Zhou Z, Ma Y, Shen Y, Li C, Wu Y, Zhu B, et al. 2013. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genom. 40(2):93–96. doi:10.1016/j.jgg.2013.01.002.
  • Fang X, Turner NC, Yan G, Li F, Siddique KHM. 2009. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot. 61:335–345. doi:10.1093/jxb/erp307
  • Farooq M, Aman U, Lee D, Alghamdi SS. 2018b. Terminal drought-priming improves the drought tolerance in desi and kabuli chickpea. Int J Agri Biol. 20:1129–1136. doi:10.17957/IJAB/15.0623
  • Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KH. 2017. Drought stress in grain legumes during reproduction and grain filling. J Agron Crop Sci. 203:81–102. doi:10.1111/jac.12169
  • Farooq M, Hussain M, Usman M, Farooq S, Alghamdi SS, Siddique KHM. 2018a. Impact of abiotic stresses on grain composition and quality in food legumes. J Agri Food Chem. 66(34):8887–8897. doi:10.1021/acs.jafc.8b02924.
  • Farooq M, Romdhane L, Mkra A-S, Rehman A, Al-Busaidi WM, Lee DJ. 2019. Morphological, physiological and biochemical aspects of osmopriming-induced drought tolerance in lentil. J Agron Crop Sci. 206(2):176–186. doi:10.1111/jac.12384.
  • Figueiredo MV, Burity HA, Martínez CR, Chanway CP. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol. 40(1):182–198. doi:10.1016/j.apsoil.2008.04.005.
  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD. 2004. Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C 3 Plants. Plant Biol. 6(3):269–279. doi:10.1055/s-2004-820867.
  • Frahm MA, Rosas JC, Mayek-Pérez N, López-Salinas E, Acosta-Gallegos JA, Kelly JD. 2004. Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica. 136:223–232. doi:10.1023/B:EUPH.0000030678.12073.a9
  • França MG, Matos AR, D’Arcy-Lameta A, Passaquet C, Lichtlé C, Zuily-Fodil Y, Pham-Thi AT. 2008. Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata. Plant Physiol Biochem. 46(12):1093–1100. doi:10.1016/j.plaphy.2008.07.004.
  • França MG, Thi AT, Pimentel C, Rossiello RO, Zuily-Fodil Y, Laffray D. 2000. Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ Exp Bot. 43(3):227–237. doi:10.1016/S0098-8472(99)00060-X.
  • Fried HG, Narayanan S, Fallen B. 2019. Evaluation of soybean [Glycine max (L.) Merr.] genotypes for yield, water use efficiency, and root traits. PloS One. 14(2):e0212700. doi:10.1371/journal.pone.0212700.
  • Gao Y, Markkanen T, Thum T, Aurela M, Lohila A, Mammarella I, Kämäräinen M, Hagemann S, Aalto T. 2016. Assessing various drought indicators in representing summer drought in boreal forests in Finland. Hydrol Earth Syst Sci. 20(1):175–191. doi:10.5194/hess-20-175-2016.
  • Gebeyehu S, Wiese H, Schubert S. 2010. Effects of drought stress on seed sink strength and leaf protein patterns of common bean genotypes. Afri Crop Sci J. 18:1–14. doi:10.4314/acsj.v18i2.65799
  • German MA, Burdman S, Okon Y, Kigel J. 2000. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fertil Soil. 32(3):259–264. doi:10.1007/s003740000245.
  • Ghanbari AA, Mousavi SH, Gorji AM, Idupulapati RA. 2013. Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turk J Field Crop. 18:73–77.
  • Ghassemi-Golezani K, Hassanpour-Bourkheili S, Bandeh-Hagh A, Abriz SF. 2014. Seed hydro-priming, a simple way for improving mungbean performance under water stress. Int J Biosci. 4:12–18. doi:10.12692/ijb/4.12
  • González EM, Gordon AJ, James CL, Arrese-Lgor C. 1995. The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot. 46(10):1515–1523. doi:10.1093/jxb/46.10.1515.
  • Grudkowska M, Zagdanska B. 2004. Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica. 51(3):609–624. doi:10.18388/abp.2004_3547.
  • Guilpart N, Roux S, Gary C, Metay A. 2017. The trade-off between grape yield and grapevine susceptibility to powdery mildew and grey mould depends on inter-annual variations in water stress. Agric Forest Meteorol. 234:203–211. doi:10.1016/j.agrformet.2016.12.023
  • Gusmao M, Siddique KH, Flower K, Nesbitt H, Veneklaas EJ. 2012. Water deficit during the reproductive period of grass pea (Lathyrus sativus L.) reduced grain yield but maintained seed size. J Agron Crop Sci. 198:430–441. doi:10.1111/j.1439-037X.2012.00513.x
  • Habibzadeh Y. 2014. Response of mung bean plants to arbuscular mycorrhiza and phosphorus in drought stress. Int J Innov Appl Stud. 6:14.
  • Habibzadeh Y, Evazi AR, Abedi M. 2014. Alleviation drought stress of mungbean (Vigna radiata L.) plants by using arbuscular mycorrhizal fungi. Int J Agric Sci Nat Resour. 1:1–6. doi:10.5829/idosi.aejaes.2013.13.12.12270
  • Hajilal MS, Rao NH, Sarma PB. 1998. Planning intra seasonal water requirements in irrigation projects. Agric Water Manag. 37(2):163–182. doi:10.1016/S0378-3774(98)00032-8.
  • Hall A. 2012. Phenotyping cowpeas for adaptation to drought. Front Physiol. 3:155. doi:10.3389/fphys.2012.00155
  • Hansel FD, Amado TJ, Ruiz Diaz DA, Rosso LH, Nicoloso FT, Schorr M. 2017. Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance. Agron J. 109(6):2936–2944. doi:10.2134/agronj2017.04.0202.
  • Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani AB, Singh G, Farooq M, Abd_Allah EF. 2019. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi J Biol Sci. 26(3):614–624. doi:10.1016/j.sjbs.2018.11.005.
  • Hassanein RA, Hassanein AA, El-din AB, Salama M, Hashem HA. 2009. Role of jasmonic acid and abscisic acid treatments in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant. Aust J Basic Appl Sci. 3:904–919.
  • He J, Du YL, Wang T, Turner NC, Yang RP, Jin Y, Xi Y, Zhang C, Cui T, Fang XW, et al. 2017. Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agric Water Manag. 179:236–245. doi:10.1016/j.agwat.2016.07.008
  • Heatherly LG. 1993. Drought stress and irrigation effects on germination of harvested soybean seed. Crop Sci. 33(4):777–781. doi:10.2135/cropsci1993.0011183X003300040029x.
  • Hossain MA, Hamid A, Khaliq MA. 2009. Evaluation of mungbean (Vigna radiata (L.) Wilczek) genotypes on the basis of photosynthesis and dry matter accumulation. J Agri Rural Dev. 7:1–8. doi:10.3329/jard.v7i1.4415
  • Hou M, Tian F, Zhang L, Li S, Du T, Huang M, Yuan Y. 2019. Estimating crop transpiration of soybean under different irrigation treatments using thermal infrared remote sensing imagery. Agronomy. 9(1):8. doi:10.3390/agronomy9010008.
  • Huang CY, Boyer JS, Vanderhoef LN. 1975. Limitation of acetylene reduction (nitrogen fixation) by photosynthesis in soybean having low water potentials. Plant Physiol. 56(2):228–232. doi:10.1104/pp.56.2.228.
  • Idrissi O, Udupa SM, De Keyser E, McGee RJ, Coyne CJ, Saha GC, Muehlbauer FJ, Van Damme P, De Riek J. 2016. Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik.) recombinant inbred line population. Front Plant Sci. 7:1174. doi:10.3389/fpls.2016.01174
  • Ines AV, Makin P, Das Gupta A IW. 2001. Crop growth and soil water balance modeling to explore water management options. International Water Management Institute. accessed 2020 December 21. http://www.iwmi.cgiar.org/Publications/Working_Papers/working/WOR22.pdf.
  • Jin J, Wang G, Liu X, Pan X, Herbert SJ, Tang C. 2006. Interaction between phosphorus nutrition and drought on grain yield, and assimilation of phosphorus and nitrogen in two soybean cultivars differing in protein concentration in grains. J Plant Nutr. 29(8):1433–1449. doi:10.1080/01904160600837089.
  • Joshi T, Yan Z, Libault M, Jeong DH, Park S, Green PJ, Sherrier DJ, Farmer A, May G, Meyers BC, et al. 2010. Prediction of novel miRNAs and associated target genes in Glycine max. BMC Bioinform. 11(Suppl 1):S14. doi:10.1186/1471-2105-11-S1-S14.
  • Kahraman A, Ceyhan E, Onder M, Topak R, Avcı MA. 2016. Drought resistance indices of chickpea (Cicer arietinum L.) germplasm. Selcuk J Agri Food Sci. 30:39–43.
  • Kanouni H, Kazemi HA, Moghadam M, Neyshabouri MR. 2002. Selection of chickpea (Cicer arietinum L.) entries for drought resistance. J Agric Sci. 12:109–121.
  • Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R. 2006. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress under terminal drought stress. Field Crops Res. 95(2–3):171–181. doi:10.1016/j.fcr.2005.02.012.
  • Kaur S, Gupta AK, Kaur N. 2002. Effect of osmo-and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul. 37(1):17–22. doi:10.1023/A.1020310008830.
  • Kaur S, Gupta AK, Kaur N. 2005. Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J Agron Crop Sci. 191(2):81–87. doi:10.1111/j.1439-037X.2004.00140.x.
  • Khalil SE, Ismael EG. 2010. Growth, yield and seed quality of Lupinus termis as affected by different soil moisture levels and different ways of yeast application. J Am Sci. 6:141–153.
  • Khan N, Bano A, Rahman MA, Guo J, Kang Z, Babar MA. 2019. Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep. 9:2097. doi:10.1038/s41598-019-38702-8
  • Khazaei H, O’Sullivan DM, Sillanpää MJ, Stoddard FL. 2014. Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). Theor Appl Genet. 127(11):2371–2385. doi:10.1007/s00122-014-2383-y.
  • King CA, Purcell LC. 2005. Inhibition of N2Fixation in Soybean Is Associated with Elevated Ureides and Amino Acids. Plant Physiol. 137(4):1389–1396. doi:10.1104/pp.104.056317.
  • Kokubun M, Shimada S, Takahashi M. 2001. Flower abortion caused by pre-anthesis water deficit is not attributed to impairment of pollen in soybean. Crop Sci. 41(5):1517–1521. doi:10.2135/cropsci2001.4151517x.
  • Krishnamurthy L, Kashiwagi J, Gaur PM, Upadhyaya HD, Vadez V. 2010. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Res. 119(2–3):322–330. 10.1016/j.fcr.2010.08.002.
  • Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang W, Liang X, Kahl G, Edwards D, Varshney RK. 2013. Functional genomics to study stress responses in crop legumes: progress and prospects. Funct Plant Biol. 40: 1221–1233.
  • Kumar J, Basu PS, Srivastava E, Chaturvedi SK, Nadarajan N, Kumar S. 2012. Phenotyping of traits imparting drought tolerance in lentil. Crop Pasture Sci. 63(6):547–554. doi:10.1071/CP12168.
  • Kumar J, Van Rheenen HA. 2000. Brief communication. A major gene for time of flowering in chickpea. J Hered. 91:67–68.
  • Kumar RR, Karjol K, Naik GR. 2011. Variation of sensitivity to drought stress in pigeon pea (Cajanus cajan [L.] Millsp) cultivars during seed germination and early seedling growth. World J Sci Technol. 1:11–18.
  • Kurdali F, Al-chammaa M, Mouasess A. 2013. Growth and nitrogen fixation in silicon and/or potassium fed chickpeas grown under drought and well watered conditions. J Stress Physiol Biochem. 9:385–406.
  • Lawlor DW, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot. 103(4):561–579. doi:10.1093/aob/mcn244.
  • Li D, Liu H, Qiao Y, Wang Y, Cai Z, Dong B, Shi C, Liu Y, Li X, Liu M. 2013. Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agric Water Manag. 129:105–112. doi:10.1016/j.agwat.2013.07.014
  • Liu F, Jensen CR, Andersen MN. 2004. Pod set related to photosynthetic rate and endogenous ABA in soybeans subjected to different water regimes and exogenous ABA and BA at early reproductive stages. Ann. Bot. 94: 405–411.
  • Lopez FB, Chauhan YS, Johansen C. 1997. Effects of timing of drought stress on leaf area development and canopy light interception of short duration pigeonpea. J Agron Crop Sci. 178(1):1–7. doi:10.1111/j.1439-037X.1997.tb00344.x.
  • Lynch JP, Brown KM. 2012. New roots for agriculture: exploiting the root phenome. Philos Trans R Soc B: Biol Sci. 367(1595):1598–1604. doi:10.1098/rstb.2011.0243.
  • Makbul S, Güler NS, Durmuş N, Güven S. 2011. Changes in anatomical and physiological parameters of soybean under drought stress. Turk J Bot. 35:369–377.
  • Mansourifar C, Shaban M, Ghobadi M, Ajirlu AR. 2011. Effect of drought stress and N fertilizer on yield, yield components and grain storage proteins in chickpea (Cicer arietinum L.) cultivars. Afri J Plant Sci. 5:634–642.
  • Mantri NL, Ford R, Coram TE, Pang EC. 2010. Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot. 69(3):286–292. doi:10.1016/j.envexpbot.2010.05.003.
  • Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, González EM. 2007. Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol. 143(4):1968–1974. doi:10.1104/pp.106.097139.
  • Marschner H. 1995. Mineral Nutrition of Higher Plants. San Diego: Academic.
  • Mashaki KM, Garg V, Ghomi AA, Kudapa H, Chitikineni A, Nezhad KZ, Yamchi A, Soltanloo H, Varshney RK, Thudi M. 2018. RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One. 13(6):e0199774. doi:10.1371/journal.pone.0199774.
  • Mathur PB, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK. 2009. Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed. 23(4):591–606. doi:10.1007/s11032-009-9258-y.
  • Mishra BK, Srivastava JP, Lal JP. 2018. Drought resistance in lentil (Lens culinaris Medik.) in relation to morphological, physiological parameters and phenological developments. Int J Curr Microbiol Appl Sci. 7(1):2288–2304. doi:10.20546/ijcmas.2018.701.277.
  • Mittal N, Mishra A, Singh R, Kumar P. 2014. Assessing future changes in seasonal climatic extremes in the Ganges river basin using an ensemble of regional climate models. Clim Change. 123(2):273–286. doi:10.1007/s10584-014-1056-9.
  • Mohammadi A, Habibi D, Rohami M, Mafakheri S. 2011. Effect of drought stress on antioxidant enzymes activity of some chickpea cultivars. Am-Eur J Agric Environ Sci. 11:782–785.
  • Mondal MM, Fakir MS, Juraimi AS, Hakim MA, Islam MM, Shamsuddoha AT. 2011. 2. Aust J Crop Sci. 5:945.
  • Musa AM, Johansen C, Kumar J, Harris D. 1999. Response of chickpea to seed priming in the high Barind Tract of Bangladesh. Int Chickpea and Pigeonpea Newslett. 6:20–22.
  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L. 2019. Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci. 20(10):2541. doi:10.3390/ijms20102541.
  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA. 2015. Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora N, editor. Plant Microbes Symbiosis: applied Facets. New Delhi: Springer; p. 1–36.
  • Ohashi Y, Nakayama N, Saneoka H, Fujita K. 2006. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biol Plant. 50(1):138–141. doi:10.1007/s10535-005-0089-3.
  • Palta JA, Nandwal AS, Kumari S, Turner NC. 2005. Foliar nitrogen applications increase the seed yield and protein content in chickpea (Cicer arietinum L.) subject to terminal drought subject to terminal drought. Aust J Agric Res. 56(2):105–112. doi:10.1071/AR04118.
  • Pandey A, Chakraborty S, Datta A, Chakraborty N. 2008. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics. 7(1):88–107. doi:10.1074/mcp.M700314-MCP200.
  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MV, Sharma S, et al. 2014. Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One. 9(8):e105228. doi:10.1371/journal.pone.0105228.
  • Polania J, Rao IM, Cajiao C, Grajales M, Rivera M, Velasquez F, Raatz B, Beebe SE. 2017. Shoot and root traits contribute to drought resistance in recombinant inbred lines of MD 23–24× SEA 5 of common bean. Front Plant Sci. 8:296. doi:10.3389/fpls.2017.00296
  • Porcel R, Barea JM, Ruiz‐Lozano JM. 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol. 157(1):135–143. doi:10.1046/j.1469-8137.2003.00658.x.
  • Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot. 55(403):1743–1750. doi:10.1093/jxb/erh188.
  • Prakash M, Sunilkumar B, Sathiyanarayanan G, Gokulakrishnan J. 2017. Screening for drought tolerance in mungbean. Legume Res. 40:423–428. doi:10.1016/j.plaphy.2020.10.021
  • Prince SJ, Joshi T, Mutava RN, Syed N, Vitor MD, Patil G, Song L, Wang J, Lin L, Chen W, et al. 2015. Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Sci. 240:65–78. doi:10.1016/j.plantsci.2015.08.017
  • Prince SJ, Murphy M, Mutava RN, Zhang Z, Nguyen N, Kim YH, Pathan SM, Shannon GJ, Valliyodan B, Nguyen HT. 2016. Evaluation of high yielding soybean germplasm under water limitation. J Integr Plant Biol. 58(5):475–591. doi:10.1111/jipb.12378.
  • Prince SJ, Valliyodan B, Ye H, Yang M, Tai S, Hu W, Murphy M, Durnell LA, Song L, Joshi T, et al. 2019. Understanding genetic control of root system architecture in soybean: insights into the genetic basis of lateral root number. Plant, Cell Environ. 42(1):212–229. doi:10.1111/pce.13333.
  • Purcell LC, King CA. 1996. Drought and nitrogen source effects on nitrogen nutrition, seed growth, and yield in soybean. J Plant Nutr. 19(6):969–993. doi:10.1080/01904169609365173.
  • Pushpavalli R, Zaman-Allah M, Turner NC, Baddam R, Rao MV, Vadez V. 2014. Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Funct Plant Biol. 42(2):162–174. doi:10.1071/FP14135.
  • Rao I, Beebe S, Polania J, Ricaurte J, Cajiao C, Garcia R, Rivera M. 2013. Can tepary bean be a model for improvement of drought resistance in common bean? Afri Crop Sci J. 21:265–281.
  • Reddy AR, Chaitanya KV, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 161(11):1189–1202. doi:10.1016/j.jplph.2004.01.013.
  • Rehman AU, Malhotra RS, Bett K, Tar’an B, Bueckert R, Warkentin TD. 2011. Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci. 51:450–463. doi:10.2135/cropsci2010.03.0129
  • Rozrokh M, Sabaghpour SH, Armin M, Asgharipour M. 2012. The effects of drought stress on some biochemical traits in twenty genotypes of chickpea. Eur J Exp Biol. 2:1980–1987.
  • Sachdeva S, Bharadwaj C, Singh RK, Jain PK, Patil BS. 2020. Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.). Roorkiwal M, Varshney R. PLoS One. 15:e0234550.
  • Sağlam S, Sibel DA, Gamze KA, Gürbüz A. 2010. Hydropriming increases germination of lentil (Lens culinaris Medik.) under water stress. Notulae Scientia Biologicae. 2(2):103–106. doi:10.15835/nsb224602.
  • Salma UK, Khatun F, Bhuiyan MJH, Yasmin S, Khan TH. 2016. In vitro screening for drought tolerance of some chickpea varieties in Bangladesh. Progress Agri. 27(2):110–118. doi:10.3329/pa.v27i2.29319.
  • Samarah N, Mullen R, Cianzio S. 2004. Size distribution and mineral nutrients of soybean seeds in response to drought stress. J Plant Nutr. 27(5):815–835. doi:10.1081/PLN-120030673.
  • Sangakkara UR, Frehner M, Nösberger J. 2000. Effect of soil moisture and potassium fertilizer on shoot water potential, photosynthesis and partitioning of carbon in mungbean and cowpea. J Agron Crop Sci. 185(3):201–217. doi:10.1046/j.1439-037x.2000.00422.x.
  • Sangakkara UR, Hartwig UA, Nösberger J. 1996. Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil. 184(1):123–130. doi:10.1007/BF00029282.
  • Sehgal A, Sita K, Bhandari K, Kumar S, Kumar J, Vara Prasad PV, Siddique KHM, Nayyar H. 2019. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant, Cell Environ. 42(1):198–211. doi:10.1111/pce.13328.
  • Sehgal A, Sita K, Kumar J, Kumar S, Singh S, Siddique KHM, Nayyar H. 2017. Effects of drought, heat and their interaction of the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci. 8:1776.
  • Serraj R. 2003. Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms. Ind J Exp Biol. 41:1136–1141.
  • Serraj R, Bidinger FR, Chauhan YS, Seetharama N, Nigam SN, Saxena NP. 2003. Management of drought in ICRISAT cereal and legume mandate crops. In: Kijne JW, Barker R, Molden D, editors. Water Productivity in Agriculture: limits and Opportunities for Improvement. Wallingford (Oxon, UK): CAB International; p. 127–144.
  • Sevanto S. 2014. Phloem transport and drought. J Exp Bot. 65(7):1751–1759. doi:10.1093/jxb/ert467.
  • Shaban M, Lak M, Hamid Y. 2012. Response of chickpea (Cicer arietinum L.) cultivars to integrated application of Zinc nutrient with water stress. International J Agri Crop Sci. 4:1074–1082.
  • Shah TM, Imran M, Atta BM, Ashraf MY, Hameed A, Waqar I, Shafiq M, Hussain K, Naveed M, Aslam M, et al. 2020. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC Plant Biol. 20(1):1–6. doi:10.1186/s12870-020-02381-9.
  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol. 167(15):1248–1252. doi:10.1016/j.jplph.2010.04.011.
  • Silveira JA, Costa RC, Oliveira JT. 2001. DROUGHT-INDUCED EFFECTS AND RECOVERY OF NITRATE ASSIMILATION AND NODULE ACTIVITY IN COWPEA PLANTS INOCULATED WITH Bradyrhizobium SPP. UNDER MODERATE NITRATE LEVEL. under moderate nitrate level. Braz J Microbiol. 32(3):187–194. doi:10.1590/S1517-83822001000300005.
  • Singh KB, Omar M, Saxena MC, Johansen C. 1997. Screening for drought resistance in spring chickpea in the Mediterranean region. J Agron Crop Sci. 178(4):227–235. doi:10.1111/j.1439-037X.1997.tb00495.x.
  • Smith SE, Facelli E, Pope S, Smith FA. 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil. 326(1–2):3–20. doi:10.1007/s11104-009-9981-5.
  • Stancheva I, Geneva M, Hristozkova M, Sichanova M, Donkova R, Petkova G, Djonova E. 2017. Response of Vigna unguiculata Grown Under Different Soil Moisture Regimes to the Dual Inoculation with Nitrogen-Fixing Bacteria and Arbuscular Mycorrhizal Fungi. Commun Soil Sci Plant Anal. 48(12):1378–1386. doi:10.1080/00103624.2017.1358740.
  • Svoboda M, Fuchs BA. 2016. Handbook of Drought Indicators and Indices; World Meteorological Organization (WMO) and Global Water Partnership (GWP). Geneva: Switzerland.
  • Tezara WM, Mitchell VJ, Driscoll SD, Lawlor DW. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 401(6756):914. doi:10.1038/44842.
  • Thalooth AT, Tawfik MM, Mohamed HM. 2006. A comparative study on the effect of foliar application of zinc, potassium and magnesium on growth, yield and some chemical constituents of mungbean plants grown under water stress conditions. World J Agric Sci. 2:37–46.
  • Torres AM, Avila CM, Gutierrez N, Palomino C, Moreno MT, Cubero JI. 2010. Marker-assisted selection in faba bean (Vicia faba L.). Field Crop Res. 115(3):243–252. doi:10.1016/j.fcr.2008.12.002.
  • Ullah A, Romdhane L, Rehman A, Farooq M. 2019. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiol Biochem. 143:11–18. doi:10.1016/j.plaphy.2019.08.020
  • Ullah A, Shah TM, Farooq M. 2020. Pulses Production in Pakistan: status, constraints and opportunities. Int J Plant Prod. 6:1–21. doi:10.1007/s42106-020-00108-2
  • Varshney RK, Dubey A. 2009. Novel genomic tools and modern genetic and breeding approaches for crop improvement. J Plant Biochem Biotechnol. 18(2):127–138. doi:10.1007/BF03263311.
  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, JayalakshmiV, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP. 2014. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet.127:445–462.
  • Vieux BE. 2004. Distributed Hydrologic Modeling Using GIS. The Netherlands; p. 289: Kluwer Academic Publishers: Dordrecht.
  • Vodkin LO, Khanna A, Shealy R, Clough SJ, Gonzalez DO, Philip R, Zabala G, Thibaud-Nissen F, Sidarous M, Strömvik MV, et al. 2004. Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant. BMC Genomics. 5(1):73. doi:10.1186/1471-2164-5-73.
  • Vyas SP. 2014. Impact and strategies for yield improvement of arid legumes under drought. Int J Appl Life Sci. 1:12–19.
  • Wang H, Inukai Y, Yamauchi A. 2006. Root development and nutrient uptake. Crit Rev Plant Sci. 25(3):279–301. doi:10.1080/07352680600709917.
  • Wang L, Liu L, Ma Y, Li S, Dong S, Zu W. 2018. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Comput Biol Chem. 77:413–429. doi:10.1016/j.compbiolchem.2018.09.012
  • Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, et al. 2009. Map-Based Cloning of the Gene Associated With the Soybean Maturity Locus E3. Genetics. 182(4):1251–1262. doi:10.1534/genetics.108.098772.
  • Wilderotter O. 2003. An adaptive numerical method for the Richards equation with root growth. Plant Soil. 251(2):255–267. doi:10.1023/A.1023031924963.
  • Xu Q, Chen S, Yunjuan R, Chen S, Liesche J. 2018. Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol. 176(1):930–945. doi:10.1104/pp.17.01088.
  • Yagoob H, Yagoob M. 2014. The effects of water deficit stress on protein yield of mung bean genotypes. Peak J Agric Sci. 2:30–35.
  • Yamaguchi M, Valliyodan B, Zhang J, Lenoble ME, Yu O, Rogers EE, Nguyen HT, Sharp RE. 2010. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region‐specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ. 33:223–343. doi:10.1111/j.1365-3040.2009.02073.x
  • Yanni Y, Zidan M, Dazzo F, Rizk R, Mehesen A, Abdelfattah F, Elsadany A. 2016. Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agri, Ecosyst Environ. 232:119–128. doi:10.1016/j.agee.2016.07.006
  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez‐Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 162(1):2–12. doi:10.1111/ppl.12540.
  • Zeri M, Alvalá R S, Carneiro R, Cunha-Zeri G, Costa J, Rossato SL, Urbano D, Vall-Llossera M, Marengo J. 2018. Tools for communicating agricultural drought over the Brazilian Semiarid using the soil moisture index. Water. 10(10):1421. doi:10.3390/w10101421.
  • Zhang Y, Ding J, Wang H, Su L, Zhao C. 2020. Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biol. 20:288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.