258
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Copper and Zinc fractions and adsorption in sandy soil with long-term pig manure application

ORCID Icon, , , , , , & show all
Pages 1930-1946 | Received 12 Oct 2020, Accepted 08 Jun 2021, Published online: 30 Jun 2021

References

  • Agbenin JO, Olojo LA. 2004. Competitive adsorption of copper and zinc by a Bt horizon of a savanna Alfisol as affected by pH and selective removal of hydrous oxides and organic matter. Geoderma 119:85–95. doi:10.1016/S0016-7061(03)00242-8.
  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorol Z. 22(6):711–728. doi:10.1127/0941-2948/2013/0507.
  • Ambrosini VG, Rosa DDJ, Melo GWB, Zalamena J, Cella C, Simão DG, Silva LS, Santos HP, Toselli M, Tiecher TL, et al. 2018. High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of ‘Red Niagara’ plantlets. Plant Physiol Biochem. 128:89–98. doi:10.1016/j.plaphy.2018.05.011.
  • Araújo E, Strawn DG, Morra M, Moore A, Alleoni LRF. 2019. Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environ Pollut. 246:1020–1026. doi:10.1016/j.envpol.2018.12.070.
  • Arias M, Barral MT, Mejuto JC. 2002. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere 48:1081–1088. doi:10.1016/S0045-6535(02)00169-8.
  • Arias M, Pérez-Novo C, López E, Soto B. 2006. Competitive adsorption and desorption of copper and zinc in acid soils. Geoderma 133:151–159. doi:10.1016/j.geoderma.2005.07.002.
  • Arias M, Pérez-Novo C, Osorio F, López E, Soto B. 2005. Adsorption and desorption of copper and zinc in the surface layer of acid soils. J Colloid Interf Sci. 288:21–29. doi:10.1016/j.jcis.2005.02.053.
  • Bacca A, Ceretta CA, Kulmann MSS, Souza ROS, Ferreira PAA, Rodrigues LAT, Marchezan C, Garlet LP, Brunetto G. 2020. Residual and immediate effect after 16 applications of organic sources on yield and nitrogen use efficiency in black oat and corn. Rev Bras Cienc Solo. 44:e0190013. doi:10.36783/18069657rbcs20190013.
  • Baghernejad M, Javaheri F, Moosavi AA. 2015. Adsorption isotherms of copper and zinc in clay minerals of calcareous soils and their effects on X-ray diffraction. Arch Agron Soil Sci. 61(8):1061–1077. doi:10.1080/03650340.2014.982549.
  • Benedet L, Comin JJ, Pescador R, Oliveira PAV, Filho PB, De Conti L, Couto RR, Lovato PE, Cesco S, Mimmo S, et al. 2016. Physiological changes in maize grown in soil with copper and zinc accumulation resulting from the addition of pig slurry and deep litter over 10 years. Water Air Soil Pollut. 227:401. doi:10.1007/s11270-016-3103-9.
  • Benedet L, De Conti L, Lazzari CJR, Müller Júnior V, Dick DP, Lourenzi CR, Lovato PE, Comin JJ, Tiecher TL, Ricachenevsky FK, et al. 2019. Copper and zinc in rhizosphere soil and toxicity potential in white oats (Avena sativa) grown in soil with long-term pig manure application. Water Air Soil Pollut. 230:209. doi:10.1007/s11270-019-4249-z.
  • Bradl HB. 2004. Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interf Sci. 277:1–18. doi:10.1016/j.jcis.2004.04.005.
  • Brummer GW. 1986. Heavy metal species, mobility and availability in soils. In: Berhand M, Brinckman FE, Sadler JP, editors. The importance of chemical speciation in environmental processes. Berlin (Heidelberg): Springer; p. 169–192.
  • Brunetto G, Benedet L, Ambrosini VG, Comin JJ, Melo GWB, Santos MA, Lourenzi CR, Loss A, Belli Filho P, Schmitt DE, et al. 2018. Copper and zinc fractions in the profile of an Inceptisol cultivated with apple in southern Brazil. Bragantia. 77(2):333–347. doi:10.1590/1678-4499.2017033.
  • Ceretta CA, Girotto E, Lourenzi CR, Trentin G, Vieira RCB, Brunetto G. 2010. Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agric Ecosyst Environ. 139:689–699. doi:10.1016/j.agee.2010.10.016.
  • Couto RR, Faversani J, Ceretta CA, Ferreira PAA, Marchezan C, Facco DB, Garlet LP, Silva JS, Comin JJ, Bizzi CA, et al. 2018. Health risk assessment and soil and plant heavy metal and bromine contents in field plots after ten years of organic and mineral fertilization. Ecotox Environ Saf. 153:142–150. doi:10.1016/j.ecoenv.2018.01.046.
  • Couto RR, Lazzari CJR, Trapp T, De Conti L, Comin JJ, Martins SR, Belli Filho P, Brunetto G. 2015. Accumulation of copper and zinc fractions in soil following the application of pig slurry for three to thirty years in a microwatershed of southern Brazil. Arch Agron Soil Sci. 62:593–616. doi:10.1080/03650340.2015.1074183.
  • Croué JP, Benedetti MF, Violleau D, Leenheer JA. 2003. Characterization and copper binding of humic and nonhumic organic matter isolated from the south platte river: evidence for the presence of nitrogenous binding site. Environ Sci Technol. 37:328–336. doi:10.1021/es020676p.
  • Czikkely M, Neubauer E, Fekete I, Ymeri P, Fogarassy C. 2018. Review of heavy metal adsorption processes by several organic matters from wastewaters. Water 10:1377. doi:10.3390/w10101377.
  • De Conti L, Ceretta CA, Ferreira PAA, Lourenzi CR, Girotto E, Lorensini F, Tiecher TL, Marchezan C, Anchieta MG, Brunetto G. 2016. Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agric Ecosyst Environ. 216:374–386. doi:10.1016/j.agee.2015.09.040.
  • De Conti L, Ceretta CA, Melo GW, Tiecher TL, Silva LOS, Garlet LP, Mimmo T, Cesco S, Brunetto G. 2019. Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere 216:147–156. doi:10.1016/j.chemosphere.2018.10.134.
  • Dhaliwal MK, Dhaliwal SS. 2019. Impact of manure and fertilizers on chemical fractions of Zn and Cu in soil under rice-wheat cropping system. J Indian Soc Soil Sci. 67(1):85–91. doi:10.5958/0974-0228.2019.00009.4.
  • Ding X, Yuan Y, Liang Y, Li L, Han X. 2014. Impact of long-term application of manure, crop residue, and mineral fertilizer on organic carbon pools and crop yields in a Mollisol. J Soil Sediment 14:854–859. doi:10.1007/s11368-013-0840-x.
  • Essington ME. 2005. Soil and water chemistry: and interactive approach. Boca Raton London: CRC Press.
  • Fernández-Calviño D, Pateiro-Moure M, Nóvoa-Muñoz JC, Garrido-Rodrigues B, Arias-Estévez M. 2012. Zinc distribution and acid–base mobilization in vineyard soils and sediments. Sci Total Environ. 414:470–479. doi:10.1016/j.scitotenv.2011.10.033.
  • Formentini TA, Basile-Doelsch I, Legros S, Borschneck D, Venzon JS, Pinheiro A, Fernandes CVS, Mallmann FJK, Veiga M, Doelsch E. 2021. Redistribution of Zn towards light-density fractions and potentially mobile phases in a long-term manure-amended clayey soil. Geoderma 394:115044. doi:10.1016/j.geoderma.2021.115044.
  • Formentini TA, Mallmann FJK, Pinheiro A, Fernandes CVS, Bender MA, Veiga M, Santos DR, Doelsch E. 2015. Copper and zinc accumulation and fractionation in a clayey Hapludox soil subject to long-term pig slurry application. Sci Total Environ. 536:831–839. doi:10.1016/j.scitotenv.2015.07.110.
  • Gee GW, Or D. 2002. Particle-size analysis. In: Dane JH, Topp GC, editors. Methods of soil analysis. Part 4, Physical methods, SSSA Book Ser 5. Madison (WI): SSSA; p. 255–293.
  • Girotto E, Ceretta CA, Brunetto G, Miotto A, Tiecher TL, De Conti L, Lourenzi CR, Lorensini F, Gubiani PI, Silva LS, et al. 2014. Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants. Environ Monit Assess. 186:9051–9063. doi:10.1007/s10661-014-4065-2.
  • He K, Sun Z, Hu Y, Zeng X, Yu Z, Cheng H. 2017. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations. Environ Sci Pollut Res. 24:9387–9398. doi:10.1007/s11356-017-8548-x.
  • Hu C, Yang X, Dong J, Zhang X. 2018. Heavy metal concentrations and chemical fractions in sediment from Swan Lagoon, China: their relation to the physiochemical properties of sediment. Chemosphere 209:848–856. doi:10.1016/j.chemosphere.2018.06.113.
  • Jiao W, Ouyang W, Hao F, Lin C. 2015. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches. Sci Total Environ. 536:609–615. doi:10.1016/j.scitotenv.2015.07.118.
  • Kabala C, Singh BR. 2001. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual. 30:485–492. doi:10.2134/jeq2001.302485x.
  • Kautz T. 2014. Research on subsoil biopores and their functions in organically managed soils: a review. Renew Agr Food Syst. 30(4):318–327. doi:10.1017/S1742170513000549.
  • Korchagin J, Moterle DF, Escosteguy PAV, Bortoluzzi EC. 2020. Distribution of copper and zinc fractions in a Regosol profile under centenary vineyard. Environ Earth Sci. 79:439. doi:10.1007/s12665-020-09209-7.
  • Lair GJ, Gerzabek MH, Haberhauer G, Jakusch M, Kirchmann H. 2006. Response of the sorption behavior of Cu, Cd, and Zn to different soil management. J Plant Nutr Soil Sc. 169:1–9. doi:10.1002/jpln.200521752.
  • Li J, Xie ZM, Zhu YG, Naidu R. 2005. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. J Environ Sci (China). 17(6):881–885.
  • Li T, Tao K, Liang C, Shohag MJI, Yang X, Sparks DL. 2013. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut. 182:248–255. doi:10.1016/j.envpol.2013.07.025.
  • Liu Y-M, Liu D-Y, Zhao Q-Y, Zhang W, Chen -X-X, Xu S-J, Zou C-Q. 2020. Zinc fractions in soils and uptake in winter wheat as affected by repeated applications of zinc fertilizer. Soil Till Res. 200:104612. doi:10.1016/j.still.2020.104612.
  • Lourenzi CR, Ceretta CA, Silva LS, Trentin G, Girotto E, Lorensini F, Tiecher TL, Brunetto G. 2011. Soil chemical properties related to acidity under successive pig slurry applications. Rev Bras Cienc Solo, 35:1827‑1836.
  • Mallmann FJK, Rheinheimer DS, Ceretta CA, Cella C, Minella JPG, Guma RL, Filipović V, Van Oort F, Šimůnek J. 2014. Soil tillage to reduce surface metal contamination – model development and simulations of zinc and copper concentration profiles in a pig slurry-amended soil. Agric Ecosyst Environ. 196:59–68. doi:10.1016/j.agee.2014.06.024.
  • Malsiu A, Shehu I, Stafilov T, Faiku F. 2020. Assessment of heavy metal concentrations with fractionation method in sediments and waters of the Badovci Lake (Kosovo). J Environ Public Health 2020:3098594. doi:10.1155/2020/3098594.
  • Marchezan C, Ferreira PAA, Silva LS, Bacca A, Krug AV, Nicoloso FT, Tarouco CP, Tiecher TL, Brunetto G, Ceretta CA. 2020. Nitrogen availability and physiological response of corn after 12 years with organic and mineral fertilization. J Soil Sci Plant Nutr. 20:979–989. doi:10.1007/s42729-020-00185-2.
  • McBride M, Martínez CE, Sauvé S. 1998. Copper(II) activity in aged suspensions of goethite and organic matter. Soil Sci Soc Am J. 62:1542–1548. doi:10.2136/sssaj1998.03615995006200060010x.
  • McBride MB. 1989. Reactions controlling heavy metal solubility in soils. In: Stewart BA, editor. Advances in soil science. Advances in soil science (Vol. 10). New York (NY): Springer; p. 1–56.
  • Moreira CS, Alleoni LRF. 2010. Adsorption of Cd, Cu, Ni and Zn in tropical soils under competitive and non-competitive systems. Sci Agric. 67(3):301–307. doi:10.1590/S0103-90162010000300008.
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27:31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Nazneen S, Singh S, Raju NJ. 2019. Heavy metal fractionation in core sediments and potential biological risk assessment from Chilika lagoon, Odisha state, India. Quatern Int. 507:370–388. doi:10.1016/j.quaint.2018.05.011.
  • Ouyang W, Wang Y, Lin C, He M, Hao F, Liu H, Zhu W. 2018. Heavy metal loss from agricultural watershed to aquatic system: a scientometrics review. Sci Total Environ. 637–638:208–220. doi:10.1016/j.scitotenv.2018.04.434.
  • Peltre C, Gregorich EG, Bruun S, Jensen LS, Magid J. 2017. Repeated application of organic waste affects soil organic matter composition: evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers. Soil Biol Biochem. 104:117–127. doi:10.1016/j.soilbio.2016.10.016.
  • Pereira WVS, Teixeira RA, Souza ES, Moraes ALF, Campos WEO, Amarante CB, Martins GC, Fernandes AR. 2020. Chemical fractionation and bioaccessibility of potentially toxic elements in area of artisanal gold mining in the Amazon. J Environ Manage. 267:110644. doi:10.1016/j.jenvman.2020.110644.
  • Pérez-Novo C, Pateiro-Moure M, Osorio F, Nóvoa-Muñoz JC, López-Periago E, Arias-Estévez M. 2008. Influence of organic matter removal on competitive and noncompetitive adsorption of copper and zinc in acid soils. J Colloid Interf Sci. 322:33–40. doi:10.1016/j.jcis.2008.03.002.
  • Qiutong X, Mingkui Z. 2017. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China. Ecotox Environ Safe. 142:410–416. doi:10.1016/j.ecoenv.2017.03.035.
  • R Core Team. R: a language and environment for statistical computing. Vienna: 2020. http://www.R-project.org/
  • Refaey Y, Jansen B, Parsons JR, Voogt P, Bagnis S, Markus A, El-Shater A-H, El-Haddad -A-A, Kalbitz K. 2017. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc: a column experiment. J Environ Manage. 187:273–285. doi:10.1016/j.jenvman.2016.11.056.
  • Reichman SM. 2002. The Responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. Melbourne: Australian Minerals & Energy Environment Foundation 54p. (Paper n°14).
  • Riaz U, Murtaza G, Saifullah FM, Aziz H, Qadir AA, Mehdi SM, Qazi MA. 2020. Chemical fractionation and risk assessment of trace elements in sewage sludge generated from various states of Pakistan. Environ Sci Pollut Res. 27:39742–39752. doi:10.1007/s11356-020-07795-4.
  • Romano N, Hopmans JW, Dane JH. 2002. Suction table. In: Dane JH, Topp GC, editors. Methods of soil analysis. Part 4, Physical methods, SSSA Book Ser 5. Madison (WI): SSSA; p. 692–698.
  • Senesi N, Sposito G, Holtzclaw KM, Bradford GR. 1989. Chemical properties of metal–humic acid fractions of a sewage–sludge-amended aridisol. J Environ Qual. 18:186–194. doi:10.2134/jeq1989.00472425001800020010x.
  • Sikora FJ, Crouse KK, Heckendorn S, Huluka G, Mitchell CC, Moore KP, Oldham JL. 2014. Cation exchange capacity. In: Sikora FJ, Moore KP, editors. Soil test methods from the southeastern United States. Southern Cooperative Series Bulletin 419. Athens: University of Georgia; p. 170–179. [accessed 2021 May 26]. http://aesl.ces.uga.edu/sera6/PUB/MethodsManualFinalSERA6.pdf
  • Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. Washington (DC): USDA-Natural Resources Conservation Service.
  • Sparks DL. 1995. Environmental soil chemistry. San Diego: Academic Press.
  • Sposito G. 2008. The chemistry of soils. 2nd ed. New York: Oxford University Press.
  • Tabelin CB, Silwamba M, Paglinawan FC, Mondejar ASJ, Duc HG, Resabal VJ, Opiso EM, Igarashi T, Tomiyama S, Ito M, et al. 2020. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. Chemosphere 260:127574. doi:10.1016/j.chemosphere.2020.127574.
  • Tessier A, Campbell PGC, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 51:844–850. doi:10.1021/ac50043a017.
  • Tiecher TL, Ceretta CA, Comin JC, Girotto E, Miotto A, Moraes MP, Benedet L, Ferreira PAA, Lorenzi CR, Couto RR, et al. 2013. Forms and accumulation of copper and zinc in a sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. Rev Bras Cienc Solo. 37:812–824. doi:10.1590/S0100-06832013000300028.
  • Tiecher TL, Soriani HH, Tiecher T, Ceretta CA, Nicoloso FT, Tarouco CP, Clasen BE, De Conti L, Tassinari A, Melo GWB, et al. 2018. The interaction of high copper and zinc doses in acid soil changes the physiological state and development of the root system in young grapevines (Vitis vinifera). Ecotox Environ Saf. 148:985–994. doi:10.1016/j.ecoenv.2017.11.074.
  • USEPA - United States Environmental Protection Agency. 2007. Method 3051A (SW-846): microwave assisted acid digestion of sediments, sludges, soils, and oils. Revision 1. Washington, DC. [accessed 2021 May 02]. https://www.epa.gov/esam/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-and-oils
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi:10.1097/00010694-193401000-00003.
  • Xie S, Wen Z, Zhan H, Jin M. 2018. An experimental study on the adsorption and desorption of Cu(II) in silty clay. Geofluids. 2018:3610921. doi:10.1155/2018/3610921.
  • Xu Y, Yu W, Ma Q, Zhou H. 2013. Accumulation of copper and zinc in soil and plant within ten-year application of different pig manure rates. Plant Soil Environ. 11:492–499. doi:10.17221/121/2013-PSE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.