511
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Soil phosphorus availability and cotton growth affected by biochar addition under two phosphorus fertilizer levels

, , , &
Pages 18-31 | Received 27 Jan 2021, Accepted 11 Jul 2021, Published online: 11 Aug 2021

References

  • Ahmad Z, Gill MA, Qureshi RH, Aslam M, Iqbal J, Nawaz S. 2000. Inter-cultivar variations of phosphorus-deficiency stress tolerance in cotton. Tropical Agr Res. 28(3):119–126.
  • Amin A-E-EA. 2018. Phosphorus dynamics and corn growth under applications of corn stalks biochar in a clay soil. Arab J Geosci. 11(14):379. doi:10.1007/s12517-018-3719-8.
  • ASTM Standard. 2009. Standard test method for chemical analysis of wood charcoal. Conshohocken (PA): American Society for Testing and Materials.
  • Beheshti M, Etesami H, Alikhani H. 2017. Interaction study of biochar with phosphate solubilizing bacterium on phosphorus availability in calcareous soil. Arch Agron Soil Sci. 63(11):1572–1581. doi:10.1080/03650340.2017.1295138.
  • Bera T, Collins H, Kumar A, Purakayastha T, Patra A. 2016. Biochar and manure effluent effects on soil biochemical properties under corn production. Appl Soil Ecol. 107:360–367. doi:10.1016/j.apsoil.2016.07.011
  • Bremner J. 1960. Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci. 55(1):11–33. doi:10.1017/S0021859600021572.
  • Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem. 14(4):319–329. doi:10.1016/0038-0717(82)90001-3.
  • Browman M, Tabatabai M. 1978. Phosphodiesterase activity of soils1. Soil Sci Soc Am J. 42(2):284–290. doi:10.2136/sssaj1978.03615995004200020016x.
  • Chen B, Jiang P, Sheng J. 2014. Effect of phosphate fertilizers on soil available phosphorus and soil enzyme activities in cotton field (in Chinese). Chinese J Soil Sci. 45(1):185–188.
  • Dai L, Li H, Tan F, Zhu N, Mingxiong H, Hu G. 2016. Biochar: a potential route for recycling of phosphorus in agricultural residues. GCB Bioenergy 8(5):852–858. doi:10.1111/gcbb.12365.
  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, Zheng B. 2016. Biochar to improve soil fertility. A Review Agron Sustainable Dev. 36:2. doi:10.1007/s13593-016-0372-z
  • Eijk D, Janssen BH, Oenema O. 2006. Initial and residual effects of fertilizer phosphorus on soil phosphorus and maize yields on phosphorus fixing soils: a case study in south-west Kenya. Agric Ecosyst Environ. 116(1):104–120. doi:10.1016/j.agee.2006.03.018.
  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol. 114:644–653. doi:10.1016/j.biortech.2012.03.022
  • Farrell M, Macdonald LM, Butler G, Chirino-Valle I, Condron LM. 2014. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50(1):169–178. doi:10.1007/s00374-013-0845-z.
  • Gao S, Deluca T, Cleveland C. 2019. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Sci Total Environ. 654:463–472. doi:10.1016/j.scitotenv.2018.11.124
  • Gaskin J, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE. 51(6):2061–2069. doi:10.13031/2013.25409.
  • Glaser B, Lehmann J, Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biol Fertil Soils 35(4):219–230. doi:10.1007/s00374-002-0466-4.
  • Glaser B, Lehr V-I. 2019. Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci Rep. 9(1):1–9. doi:10.1038/s41598-019-45693-z.
  • Hou E, Luo Y, Kuang Y, Chen C, Xiankai L, Jiang L, Luo X, Wen D. 2020. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat Commun. 11(1):637. doi:10.1038/s41467-020-14492-w.
  • Hu N, Li H, Tang Z, Li Z, Li G, Jiang Y, Hu X, Lou Y. 2016. Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a Karst region. Eur J Soil Biol. 73:77–83. doi:10.1016/j.ejsobi.2016.01.007
  • Iqbal B, Kong F, Ullah I, Ali S, Li H, Wang J, Khattak WA, Zhou Z. 2020. Phosphorus application improves the cotton yield by enhancing reproductive organ biomass and nutrient accumulation in two cotton cultivars with different phosphorus sensitivity. Agronomy 10(2):153. doi:10.3390/agronomy10020153.
  • Chathurika J, Kumaragamage D, Zvomuya F, Akinremi O, Flaten D, Indraratne S, Dandeniya W. 2016. Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils. Can J Soil Sci. 96(4):472–484. doi:10.1139/CJSS-2015-094.
  • Jin Y, Liang X, He M, Liu Y, Tian G, Shi J. 2015. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere 142:128–135. doi:10.1016/j.chemosphere.2015.07.015
  • Jin Z, Chen C, Chen X, Jiang F, Hopkins I, Zhang X, Han Z, Billy G, Benavides J. 2019. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: a five-year field trial in upland red soil, China. Field Crop Res. 232:77–87. doi:10.1016/j.fcr.2018.12.013
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota - A review. Soil Biol Biochem. 43(9):1812–1836. 10.1002/jobm.200610285. doi:10.1016/j.soilbio.2011.04.022.
  • Li H, Li Y, Xu Y, Lu X. 2019. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244:125471. doi:10.1016/j.chemosphere.2019.125471
  • Lin X. 2010. Principles and Methods of Soil Microbiology Research. Beijing: Higher Education Press (in Chinese); p.60-61.
  • Liu S, Meng J, Jiang L, Yang X, Lan Y, Chen W. 2017. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl Soil Ecol. 116:12–22. doi:10.1016/j.apsoil.2017.03.020
  • Lu R. 1999. Method for agro-chemical analyses of soil. Beijing Agric Sci Technol Press of China. in Chinese p.22-96.
  • Ma L, Kong F, Wang Z, Luo Y, Lv X, Zhou Z, Meng Y. 2019. Growth and yield of cotton as affected by different straw returning modes with an equivalent carbon input. Field Crop Res. 243:107616. doi:10.1016/j.fcr.2019.107616
  • Pundarikakshudu R. 1989. Studies of the phosphate dynamics in a vertisol in relation to the yield and nutrient uptake of rainfed cotton. Exp Agric. 25(1):39–45. doi:10.1017/S0014479700016422.
  • Ramos T, Castanheira N, Gonçalves M, Fernandes ML, Januario I, Lourenço ME, Pires FP, Martins JC. 2012. Effect of combined use of brackish water and nitrogen fertilizer on biomass and sugar yield of sweet sorghum. Pedosphere 22(6):785–794. doi:10.1016/S1002-0160(12)60064-2.
  • Rawat P, Das S, Shankhdhar D, Shankhdhar S. 2020. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr. 21(1):49–68. doi:10.1007/s42729-020-00342-7.
  • Saleem M, Cheema M, Rasul F, Bilal M, Anjum S, Wahid M. 2010. Effect of Phosphorus on growth and yield of cotton. Crop and Environment. 1(1):39–43.
  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. 2011. Phosphorus Dynamics: from Soil to Plant. Plant Physiol. 156(3):997–1005. doi:10.1104/pp.111.175232.
  • Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12th. Washington (DC): USDA-Natural Resources Conservation Service.
  • Tag A, Duman G, Uçar S, Yanik J. 2016. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis. 120:200–206. doi:10.1016/j.jaap.2016.05.006
  • Thies J, Rillig M. 2009. Characteristics of biochar: biological properties London: earthscan. Biochar for Environmental Management: Science and Technology. London: Earthscan; p.85-105.
  • Uchimiya M, Hiradate S, Antal M. 2015. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars. ACS Sustainable Chem Eng. 3(7):1642–1649. doi:10.1021/acssuschemeng.5b00336.
  • Wang Y, Zhao X, Wang L, Zhao P, Zhu W. 2016. Phosphorus fertilization to the wheat-growing season only in a rice–wheat rotation in the Taihu Lake region of China. Field Crop Res. 198:32–39. doi:10.1016/j.fcr.2016.08.025
  • Xiao Q, Zhu L-X, Zhang H-P, Li X-Y, Shen Y-F, Li S-Q. 2016. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci. 67(5):495. doi:10.1071/CP15351.
  • Xu G, Junna S, Shao H, Chang S. 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng. 62:54–60. doi:10.1016/j.ecoleng.2013.10.027
  • Zhai L, CaiJi Z, Liu J, Wang H, Ren T, Gai X, Xi B, Liu H. 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biol Fertil Soils 51(1):113–122. doi:10.1007/s00374-014-0954-3.
  • Zhan Y, Wang Z, Meng Y. 2020. Biochar addition improves soil phosphorus availability: a meta-analysis (in Chinese). Chinese J Appl. Ecol. 31(4):1185–1193.
  • Zhang H, Chen C, Gray E, Boyd S, Yang H, Zhang D. 2016a. Roles of biochar in improving phosphorus availability in soils: a phosphate adsorbent and a source of available phosphorus. Geoderma 276:1–6. doi:10.1016/j.geoderma.2016.04.020
  • Zhang Y, Chen L, Zhang Y, Wu Z, Ma X, Yang X. 2016b. Examining the effects of biochar application on soil phosphorus levels and phosphatase activities with visible and fluorescence spectroscopy. Spectrosc Spectral Anal. 36(7):2325–2329. doi:10.3964/j.1000-0593(2016)07-2325-05.
  • Zhao J, Ren T, Zhang Q, Du Z, Wang Y. 2016. Effects of biochar amendment on soil thermal properties in the north china plain. Soil Sci Soc Am J. 80(5):1157–1166. doi:10.2136/sssaj2016.01.0020.
  • Zhu C, Luo D, Hu X, Xu S, Wang L, Zhang X, Guo X, Niu D, Li B. 2016. Camellia stand soil biochemical response to phosphorus level research (in Chinese). J Cent South Univ For Technol. 37(2):57–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.