1,390
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Urea-based nitrogen fertilization in agriculture: a key source of N2O emissions and recent development in mitigating strategies

, & ORCID Icon
Pages 663-678 | Received 04 Jan 2021, Accepted 01 Jan 2022, Published online: 26 Jan 2022

References

  • Aamer M, Shaaban M, Hassan MU, Guoqin H, Ying L, Hai Ying T, Rasul F, Qiaoying M, Zhuanling L, Rasheed A, et al. 2020. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. J Environ Manage. 255:109891.1–109891.7. DOI:10.1016/j.jenvman.2019.109891.
  • Abalos D, Sanz-Cobena A, Misselbrook T, Vallejo A. 2012. Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere. 89(3):310–318. DOI:10.1016/j.chemosphere.2012.04.043.
  • Akiyama H, Yan X, Yagi K. 2010. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biol. 16(6):1837–1846. DOI:10.1111/j.1365-2486.2009.02031.x.
  • Amkha S, Sakamoto A, Tachibana M, Inubushi K. 2009. Controlled mineralizing acetaldehyde condensation urea (CM-CDU) fertilizer can reduce nitrate leaching and N2O emission from an Andisol with continuous cropped komatsuna (Brassica napa L.). Soil Sci Plant Nutr. 55(6):772–777. DOI:10.1111/j.1747-0765.2009.00418.x.
  • Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF, Recous BF, Roux XL. 2010. Shifts between Nitrospira- andNitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ Microbiol. 12(2):315–326. DOI:10.1111/j.1462-2920.2009.02070.x.
  • Badri DV, Vivanco JM. 2009. Regulation and function of root exudates. Plant Cell Environ. 32(6):666–681. DOI:10.1111/j.1365-3040.2009.01926.x.
  • Bakken LR, Bergaust L, Liu B, and Frostegård Å. 2012. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos T R Soc B. 367:1226–1234.
  • Bardon C, Poly F, Piola F, Pancton M, Comte G, Meiffren G, Haichar Fe Z. 2016. Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration. FEMS Microbiol Ecol. 92(5):5. DOI:10.1093/femsec/fiw034.
  • Bateman EJ, Baggs EM. 2005. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soil. 41(6):379–388. DOI:10.1007/s00374-005-0858-3.
  • Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO, Mulholland PJ, Peterson BJ, Ashkenas LR, Cooper LW, Dahm CN, et al. 2011. Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci USA. 108(1):214–219. DOI:10.1073/pnas.1011464108.
  • Beaumont HJE, Hommes NG, Sayavedra-Soto LA, Arp DJ, Arciero DM, Hooper AB, Westerhoff HV, van Spanning RJM. 2002. Nitrite Reductase of Nitrosomonas europaea Is Not Essential for Production of Gaseous Nitrogen Oxides and Confers Tolerance to Nitrite. J Bacteriol. 184(9):2557–2560. DOI:10.1128/JB.184.9.2557-2560.2002.
  • Bender SF, Plantenga F, Neftel A, Jocher M, Hans-Rudolf O, Köhl L, Giles M, Daniell T, van der Heijden MGA. 2014. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J. 8(6):1336–1345. DOI:10.1038/ismej.2013.224.
  • Berg P, Klemedtsson L, and Rosswall T. 1982. Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol Biochem. 14:301–303.
  • Bergaust L, Mao Y, Bakken LR, Å F. 2010. Denitrification Response Patterns during the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrogen Oxide Reductase in Paracoccus denitrificans. Appl Environ Microbiol. 76(19):6387–6396. DOI:10.1128/AEM.00608-10.
  • Bhandral R, Saggar S, Bolan NS, Hedley MJ. 2007. Transformation of nitrogen and nitrous oxide emission from grassland soils as affected by compaction. Soil Till Res. 94(2):482–492. DOI:10.1016/j.still.2006.10.006.
  • Bolan NS, Saggar S, Luo JF, Bhandral R, Singh J. 2004. Gaseous emissions of nitrogen from grazed pastures: processes, measurements and modelling, environmental implications, and mitigation. In: Sparks DL, editor. Adv Agron. Vol. 84, p. 37–120. Academic Press.
  • Bortoletto-Santos R, Guimaraes GGF, Roncato V, Da Cruz DF, Polito WL, Ribeiro C. 2019. Biodegradable oil-based polymeric coatings on urea fertilizer: n release kinetic transformations of urea in soil. Sci Agr. 77(1): e20180033.
  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos T R Soc B. 368(1621): 20130122.
  • Cai Y, and Akiyama H. 2017. Effects of inhibitors and biochar on nitrous oxide emissions, nitrate leaching, and plant nitrogen uptake from urine patches of grazing animals on grasslands: a meta-analysis. Soil Sci Plant Nutr. 63(4): 405–414.
  • Calvo P, Watts DB, Ames RN, Kloepper JW, Torbert HA. 2013. Microbial-based inoculants impact nitrous oxide emissions from an incubated soil medium containing urea fertilizers. J Environ Qual. 42(3):704–712. DOI:10.2134/jeq2012.0300.
  • Castaldi S, Riondino M, Baronti S, Esposito FR, Marzaioli R, Rutigliano FA, Vaccari FP, Miglietta F. 2011. Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere. 85(9):1464–1471. DOI:10.1016/j.chemosphere.2011.08.031.
  • Cayuela ML, Jeffery S, van Zwieten L. 2015. The molar H:Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agr Ecosyst Environ. 202:135–138. DOI:10.1016/j.agee.2014.12.015.
  • Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sanchez-Monedero MA. 2014. Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agr Ecosyst Environ. 191:5–16. DOI:10.1016/j.agee.2013.10.009.
  • Chahal I, Baral KR, Congreves KA, Van Eerd LL, Wagner-Riddle C. 2021. Opportunities to reduce nitrous oxide emissions from horticultural production systems in Canada. Can J Plant Sci. 101(6): 999-1013.
  • Chen H, Mothapo NV, and Shi W. 2015. Soil moisture and pH control relative contributions of fungi and bacteria to N2O production. Microb Ecol. 69:180–191.
  • Clough TJ, Sherlock RR, Mautner MN, Milligan DB, Wilson PF, Freeman CG, McEwan MJ. 2003. Emission of nitrogen oxides and ammonia from varying rates of applied synthetic urine and correlations with soil chemistry. Aust J Soil Res. 41(3):421–438. DOI:10.1071/SR02105.
  • Coskun D, Britto DT, Shi W, Kronzucker HJ. 2017. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 22(8):661–673. DOI:10.1016/j.tplants.2017.05.004.
  • Dai WW, Bai E, Li W, Jiang P, Dai GH, Zheng XB. 2020. Predicting plant–soil N cycling and soil N2O emissions in a Chinese old-growth temperate forest under global changes: uncertainty and implications. Soil Ecol Lett. 2(1):73–82. DOI:10.1007/s42832-020-0021-y.
  • Davidson EA. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geosci. 2(9):659–662. DOI:10.1038/ngeo608.
  • de Klein CAM, Ledgard SF. 2005. Nitrous oxide emissions from New Zealand agriculture–key sources and mitigation strategies. Nutrt Cycl Agroecosys. 72(1):77–85. DOI:10.1007/s10705-004-7357-z.
  • Del Grosso SJ, Mosier AR, Parton WJ, Ojima DS. 2005. Daycent model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Till Res. 83(1):9–24. DOI:10.1016/j.still.2005.02.007.
  • Di T, Afzal MR, Yoshihashi T, Deshpande S, Zhu Y, Subbarao GV. 2018. Further insights into underlying mechanisms for the release of biological nitrification inhibitors from sorghum roots. Plant Soil. 423(1–2):99–110. DOI:10.1007/s11104-017-3505-5.
  • Dobbie KE, Smith KA. 2003. Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutr Cycling Agroecosyst. 67(1):37–46. DOI:10.1023/A:1025119512447.
  • Edwards JD, Pittelkow CM, Kent AD, Yang WH. 2018. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol Biochem. 122:81–90. DOI:10.1016/j.soilbio.2018.04.008.
  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H. 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA. 109(7):2666–2671. DOI:10.1073/pnas.1118650109.
  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP. 2015. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biol. 21(5):2082–2094. DOI:10.1111/gcb.12816.
  • Fox TR, Allen HL, Albaugh TJ, Rubilar R, Carlson CA. 2007. Tree nutrition and forest fertilization of pine plantations in the southern United States. South J Appl For. 31(1):5–11. DOI:10.1093/sjaf/31.1.5.
  • Freitag A, Rudert M, Bock E. 1987. Growth of Nitrobacter by dissimilatoric nitrate reduction. FEMS Microbiol Lett. 48(1–2):105–109. DOI:10.1111/j.1574-6968.1987.tb02524.x.
  • Freney JR, Keerthisinghe DG, Phongpan S, Chaiwanakupt P, Harrington KJ. 1995. Effect of urease, nitrification and algal inhibitors on ammonia loss and grain-yield of flooded rice in Thailand. Fertil Res. 40(3):225–233. DOI:10.1007/BF00750469.
  • Friedl J, Scheer C, Rowlings DW, Deltedesco E, Gorfer M, De Rosa D, Grace PR, Müller C, Keiblinger KM. 2020. Effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N turnover, the N2O reductase-gene nosZ and N 2O:N 2 partitioning from agricultural soils. Sci Rep-UK. 10(1):2399. DOI:10.1038/s41598-020-59249-z.
  • Fu Q, Abadie M, Blaud A, Carswell A, Misselbrook TH, Clark IM, Hirsch PR. 2020. Effects of urease and nitrification inhibitors on soil N, nitrifier abundance and activity in a sandy loam soil. Biol Fertil Soil. 56(2):185–194. DOI:10.1007/s00374-019-01411-5.
  • Garcia C, Vallejo A, Diez JA, Garcia L, Cartagena MC. 1997. Nitrogen use efficiency with the application of controlled release fertilizers coated with kraft pine lignin. Soil Sci Plant Nutr. 43(2):443–449. DOI:10.1080/00380768.1997.10414768.
  • Gillam KM, Zebarth BJ, Burton DL. 2008. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Can J Soil Sci. 88(2):133–143. DOI:10.4141/CJSS06005.
  • Gu J, Nie H, Guo H, Xu H, Gunnathorn T. 2019. Nitrous oxide emissions from fruit orchards: a review. Atmos Environ. 201:166–172. DOI:10.1016/j.atmosenv.2018.12.046.
  • Guertal EA. 2009. Slow-release nitrogen fertilizers in vegetable production: a review. Horttechnology. 19(1):16–19. DOI:10.21273/HORTSCI.19.1.16.
  • Guo C, Ren T, Wang B, Zou JL, Hussain S, Cong RH, Wu LS, Lu JW, Li XK, Li X. 2019. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environ Sci Poll Res. 26(3):2569–2579. DOI:10.1007/s11356-018-3792-2.
  • Halvorson AD, Snyder CS, Blaylock AD, Del Grosso SJ. 2014. Enhanced-efficiency nitrogen fertilizers: potential role in nitrous oxide emission mitigation. Agron J. 106(2):715–722. DOI:10.2134/agronj2013.0081.
  • Harty MA, Forrestal PJ, Watson CJ, McGeough KL, Carolan R, Elliot C, Krol D, Laughlin RJ, Richards KG, Lanigan GJ. 2016. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Sci Total Environ. 563-564:576–586. DOI:10.1016/j.scitotenv.2016.04.120.
  • Hink L, Gubry-Rangin C, Nicol GW, Prosser JI. 2018. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. 12:1084–1093.
  • Hu HW, Chen D, He JZ. 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev. 39:729–749.
  • Hu HW, Zhang LM, Dai Y, Di HJ, and He JZ. 2013. pH dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soil Sediment.13:1439–1449.
  • Hube S, Alfaro MA, Scheer C, Brunk C, Ramirez L, Rowlings D, Grace P. 2017. Effect of nitrification and urease inhibitors on nitrous oxide and methane emissions from an oat crop in a volcanic ash soil. Agr Ecosyst Environ. 238:46–54. DOI:10.1016/j.agee.2016.06.040.
  • IPCC (2007). Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Press, New York.
  • IPCC (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by et al. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
  • Ji C, Li S, Geng Y, Miao Y, Ding Y, Liu S, Zou J. 2020. Differential responses of soil N2O to biochar depend on the predominant microbial pathway. Appl Soil Ecol. 145:103348. DOI:10.1016/j.apsoil.2019.08.010.
  • Jiang MH, Zhang L, Liu M, Qiu H, Zhou SG. 2020. Fungi dominate denitrification when Chinese milk vetch green manure is used in paddy soil. Soil Ecol Lett. DOI:10.1007/s42832-020-0064-0.
  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV. 2012. Biochar mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem. 45:113–124. DOI:10.1016/j.soilbio.2011.10.012.
  • Jung MY, Well R, Min D, Giesemann A, Park SJ, Kin JG, Kim SJ, and Rhee SK. 2014. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J. 8:1115–1125.
  • Kammann C, Ippolito JI, Borchard N, Cayuela ML, Estavillo JM, Fuertes-Mendizabal T, Jeffery S, Kern J, Noval J, Rasse D, et al. 2017. Biochar as a tool to reduce the agricultural greenhouse gas burden knows, unknowns and future research needs. J Environ Eng Landsc. 25(2):114–139. DOI:10.3846/16486897.2017.1319375.
  • Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S. 2014. Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Let. 1(8):339–344. DOI:10.1021/ez5002209.
  • Karwat H, Moreta D, Arango J, Núñez J, Rao I, Á R, Rasche F, Cadisch G. 2017. Residual effect of BNI by brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize. Plant Soil. 420(1–2):389–406. DOI:10.1007/s11104-017-3381-z.
  • Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, Von Borzyskowski LS, Erb TJ, Stahl DA, Berg IA. 2014. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA. 111(22):8239–8244. DOI:10.1073/pnas.1402028111.
  • Lazcano C, Barrios Masias FH, Jackson LE. 2014. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biol Biochem. 74:184–192. DOI:10.1016/j.soilbio.2014.03.010.
  • Lehmann J, Rondon M. 2006. Biochar soil management on highly weathered soils in the humid tropics. Bioll Approaches to Sustainable Soil Syst. 113:517–530.
  • Lin YM, Tay JH, Liu Y, Hung YT. 2009. Biological nitrification and denitrification processes. Biol Treat Processes. 8:539–588.
  • Liu S, Wang JJ, Tian Z, Wang X, Harrison S. 2017. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies. J Environ Sci. 57:196–210. doi:10.1016/j.jes.2017.02.014.
  • Lu YF, Zhang XN, Jia JF, Kronzucker HJ, Shen WS, Shi WM. 2019. Effects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils. Soil Biol Biochem. 129:48–59. doi:10.1016/j.soilbio.2018.11.008.
  • Ma X, Chen J, Yang Y, Su X, Zhang S, Gao B, Li YC. 2018. Siloxane and polyether dual modification improves hydrophobicity and interpenetrating polymer network of bio-polymer for coated fertilizers with enhanced slow release characteristics. Chem Eng J. 350:1125–1134. doi:10.1016/j.cej.2018.06.061.
  • Malla G, Bhatia A, Pathak H, Prasad S, Jain N, Singh J. 2005. Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere. 58(2):141–147. DOI:10.1016/j.chemosphere.2004.09.003.
  • Marusenko Y, Huber DP, Hall SJ. 2013. Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US. Soil Biol Biochem. 63:24–36. DOI:10.1016/j.soilbio.2013.03.018.
  • Mathieu O, Hénault C, Lévêque J, Baujard E, Milloux MJ, Andreux F. 2006. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using 15N tracers. Environ Pollut. 144(3):933–940. DOI:10.1016/j.envpol.2006.02.005.
  • McGeough KL, Watson CJ, Mueller C, Laughlin RJ, Chadwick DR. 2016. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biol Biochem. 94:222–232.
  • McSwiney CP, Robertson GP. 2005. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system. Global Change Biol. 11(10):1712–1719. DOI:10.1111/j.1365-2486.2005.01040.x.
  • Morley N, Baggs EM. 2010. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol Biochem. 42(10):1864–1871. DOI:10.1016/j.soilbio.2010.07.008.
  • Mothapo NV, Chen H, Cubeta MA, Shi W. 2013. Nitrous oxide producing activity of diverse fungi from distinct agroecosystems. Soil Biol Biochem. 66:94–101. DOI:10.1016/j.soilbio.2013.07.004.
  • Müller C, Kammann C, Ottow JCG, and Jager HJ. 2003. Nitrous oxide emission from frozen grassland soil and during thawing periods. J Plant Nutr Soil Sci. 166:46–53.
  • Nelissen V, Saha BK, Ruysschaert G, Boeckx P. 2014. Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem. 70:244–255. DOI:10.1016/j.soilbio.2013.12.026.
  • Ni K, Pacholski A, Kage H. 2014. Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors. Agr Ecosyst Environ. 197:184–194. DOI:10.1016/j.agee.2014.08.007.
  • Pan BB, Lam SK, Mosier A, Luo YQ, Chen DL. 2016. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agr Ecosyst Environ. 232:283–289. DOI:10.1016/j.agee.2016.08.019.
  • Philippot L, Andert J, Jones CM, Bru D, Hallin S. 2011. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biol. 17:1497–1504.
  • Prosser JI, Hink L, Gubry-Rangin C, Nicol GW. 2020. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biol. 26(1):103–118. DOI:10.1111/gcb.14877.
  • Qiao CL, Liu LL, Hu SJ, Compton JE, Greaver TL, Li QL. 2015. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biol. 21(3):1249–1257. DOI:10.1111/gcb.12802.
  • Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ. 2012. Global agriculture and nitrous oxide emissions. Nat Clim Change. 2:410–416.
  • Risk N, Snider D, Wagner-Riddle C. 2013. Mechanisms leading to enhanced soil nitrous oxide fluxes induced by freeze–thaw cycles. Can J Soil Sci. 93(4):401–414. DOI:10.4141/cjss2012-071.
  • Ruser R, Schulz R. 2015. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J Plant Nutr Soil Sci. 178(2):171–188. DOI:10.1002/jpln.201400251.
  • Sainz Rozas HR, Echeverria HE, Picone LI. 2001. Denitrification in maize under no tillage: effect of nitrogen rate and application time. Soil Sci Soc Am J. 65(4):1314–1323. DOI:10.2136/sssaj2001.6541314x.
  • Sakata R, Shimada S, Arai H, Yoshioka N, Yoshioka R, Aoki H, Kimoto N, Sakamoto A, Melling L, Inubushi K. 2015. Effect of soil types and nitrogen fertilizer on nitrous oxide and carbon dioxide emissions in oil palm plantations. Soil Sci Plant Nutr. 61(1):48–60. DOI:10.1080/00380768.2014.960355.
  • Sanz-Cobena A, Misselbrook T, Camp V, Vallejo A. 2011. Effect of water addition and the urease inhibitor NBPT on the abatement of ammonia emission from surface applied urea. Atmos Environ. 45(8):1517–1524. DOI:10.1016/j.atmosenv.2010.12.051.
  • Scheer C, Rowlings DW, Migliorati MDA, Lester DW, Bell MJ, Grace PR. 2016. Effect of enhanced efficiency fertilisers on nitrous oxide emissions in a sub-tropical cereal cropping system. Soil Res. 54(5):544–551. DOI:10.1071/SR15332.
  • Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol. 3:372. DOI:10.3389/fmicb.2012.00372.
  • Senbayram M, Chen R, Budai A, Bakken L, Dittert K. 2012. N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agr Ecosyst Environ. 147:4–12. DOI:10.1016/j.agee.2011.06.022.
  • Shaviv A. 2001. Advances in controlled-release fertilizers. Adv Agron. 71:1–49.
  • Shoun H, Fushinobu S, Jiang L, Kim S-W, Wakagi T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos T R Soc B. 367(1593):1186–1194. DOI:10.1098/rstb.2011.0335.
  • Shrestha RK, Strahm BD, Sucre EB. 2015. Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems. New Forest. 46(2):167–193. DOI:10.1007/s11056-014-9454-4.
  • Šimek M, Cooper JE. 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur J Soil Sci. 53:345–354.
  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agr Ecosyst Environ. 133(3–4):247–266. DOI:10.1016/j.agee.2009.04.021.
  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere. 77(4):574–581. DOI:10.1016/j.chemosphere.2009.06.053.
  • Starkenburg SR, Arp DJ, Bottomley PJ. 2008. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide I Nitrobacter winogradsky Nb-255. Environ Microbiol. 10(11):3036–3042. DOI:10.1111/j.1462-2920.2008.01763.x.
  • Stein LY, Arp DJ, Berube PM, Chain PSG, Hauser L, Jetten MS, Klotz MG, Larimer FW, Norton JM, Den Camp Hjm O. 2007. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol. 9(12):2993–3007. DOI:10.1111/j.1462-2920.2007.01409.x.
  • Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S, Richter A, Schleper C. 2014. Aerobic nitrous oxide production through N nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8(5):1135–1146. DOI:10.1038/ismej.2013.220.
  • Storer KE, Coggan A, Ineson P, Hodge A. 2017. Arbuscular mycorrhizal fungi reduce nitrous oxide emissions from N2O hotspots. New Phytologist. 220(4):1285–1295. DOI:10.1111/nph.14931.
  • Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL. 2006. A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil. 288(1–2):101–112. DOI:10.1007/s11104-006-9094-3.
  • Subbarao GV, Tomohiro B, Masahiro K, Osamu I, Samejima H, Wang HY, Pearse SJ, Gopalakrishnan S, Nakahara K, Zakir Hossain AKM, et al. 2007. Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil. 299(1–2):55–64. DOI:10.1007/s11104-007-9360-z.
  • Sun L, Lu Y, Yu F, Kronzucker HJ, Shi W. 2016. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen use efficiency. New Phytol. 212(3):646–656. DOI:10.1111/nph.14057.
  • Syakila A, Kroeze C. 2011. The global nitrous oxide budget revisited. Greenh Gas Measure Manage. 1(1):17–26. DOI:10.3763/ghgmm.2010.0007.
  • Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR, Craigie RA. 2011. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual. 40(2):468–476. DOI:10.2134/jeq2010.0419.
  • Teutscherova N, Vazquez E, Arango J, Arevalo A, Benito M, Pulleman M. 2019. Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. Geoderma. 338:493–501. DOI:10.1016/j.geoderma.2018.09.023.
  • Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A. 2013. Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ. 465:72–96. DOI:10.1016/j.scitotenv.2013.01.031.
  • Thapa R, Chatterjee A, Awale R, McGranahan DA, Daigh A. 2016. Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: a meta-analysis. Soil Sci Soc Am J. 80(5):1121–1134. DOI:10.2136/sssaj2016.06.0179.
  • Tian Z, Wang JJ, Liu S, Zhang Z, Dodla SK, Myers G. 2015. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region. Sci Total Environ. 533:329–338. DOI:10.1016/j.scitotenv.2015.06.147.
  • Tiedje JM. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Environ Microbiol Anaero In AJB Zehnder(ed). 179–244.
  • Tierling J, Kuhlmann H. 2018. Emissions of nitrous oxide (N2O) affected by pH related nitrite accumulation during nitrification of N fertilizers. Geoderma. 310:12–21. DOI:10.1016/j.geoderma.2017.08.040.
  • Tortoso AC, Hutchinson GL. 1990. Contributions of Autotrophic and Heterotrophic Nitrifiers to Soil NO and N2O Emissions. Appl Environ Microb. 56(6):1799–1805. DOI:10.1128/aem.56.6.1799-1805.1990.
  • van Kessel Mahj, Speth DR, Albertsen M, Nielsen PH, Op Den Camp HJM, Den Camp Hjm O, Jetten MSM, Lücker S, van Kessel MAHJ. 2015. Complete nitrification by a single microorganism. Nature. 528(7583):555–559. DOI:10.1038/nature16459.
  • van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C. 2010. Influence of biochars on flux of N2O and CO2 from Ferrosol Australian. J Soil Res. 48(7):555–568. DOI:10.1071/SR10004.
  • Velthof GL, Kuikman PJ, Oenema O. 2003. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol Fert Soils. 37(4):221–230. DOI:10.1007/s00374-003-0589-2.
  • Veresoglou SD, Sen R, Mamolos AP, Veresoglou DS. 2011. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils. J Ecol. 99(6):1339–1349. DOI:10.1111/j.1365-2745.2011.01863.x.
  • Veresoglou SD, Verbruggen E, Makarova O, Mansour I, Sen R, Rillig MC. 2019. Arbuscular mycorrhizal fungi alter the community structure of ammonia oxidizers at high fertility via competition for soil NH4+. Microb Ecol. 78(1):147–158. DOI:10.1007/s00248-018-1281-2.
  • Wang H, Koebke S, Dittert K. 2020. Use of urease and nitrification inhibitors to reduce gaseous nitrogen emissions from fertilizers containing ammonium nitrate and urea. Glob Ecol Conse. 22. DOI:10.1016/j.gecco.2020.e00933.
  • Wang Z, Zheng H, Luo Y, Deng X, Herbert S, Xing B. 2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ Pollut. 174:289–296. doi:10.1016/j.envpol.2012.12.003.
  • Weier KL, Doran JW, Power JF, Walters DT. 1993. Denitrification and the dinitrogen nitrous oxide ratio as affected by soil water, available carbon and nitrate. Soil Sci Soc Am J. 57(1):66–72. DOI:10.2136/sssaj1993.03615995005700010013x.
  • Wrage N, Velthof GL, van Beusichem ML, Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem. 33(12–13):1723–1732. DOI:10.1016/S0038-0717(01)00096-7.
  • Wu D, Zhao Z, Han X, Meng F, Wu W, Zhou M, Brüggemann N, Bol R. 2018. Potential dual effect of nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrifier denitrification in the mitigation of peak N2O emission events in North China Plain cropping systems. Soil Biol Biochem. 121:147–153. DOI:10.1016/j.soilbio.2018.03.010.
  • Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H. 2012. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res. 46(4):1027–1037. DOI:10.1016/j.watres.2011.11.080.
  • Ye ZX, Zhang LM, Huang QY, Tan ZX. 2019. Development of a carbon-based slow release fertilizer treated by bio-oil coating and study on its feedback effect on farmland application. J Clean Prod. 239:118085. DOI:10.1016/j.jclepro.2019.118085.
  • Zaman M, Nguyen ML, Blennerhassett JD, Quin BF. 2008. Reducing NH3, N2O and NO3–N losses from a pasture soil with urease or nitrification inhibitors and elemental S amended nitrogenous fertilizers. Biol Fert Soils. 44(5):693–705. DOI:10.1007/s00374-007-0252-4.
  • Zerpa JL, Fox TR. 2011. Controls of volatile ammonia losses from loblolly pine plantations fertilized with urea in the southeast USA. Soil Sci Soc Am J. 75(1):257–266. DOI:10.2136/sssaj2010.0101.
  • Zerulla W, Barth T, Dressel J, Erhardt K, Horchler Von Locquenghien, Von Locquenghien Kh G, Rädle M, Wissemeier. 2001. 3,4-Dimethylpyrazole phosphate (DMPP) a new nitrification inhibitor for agriculture and horticulture: an introduction. Biol Fert Soils. 34(2):79–84. DOI:10.1007/s003740100380.
  • Zhang LM, Hu HW, Shen JP, and He JZ. 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6:1032–1045.
  • Zhang M, Fan CH, Li QL, Li B, Zhu YY, Xiong ZQ. 2015. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agr Ecosyst Environ. 201:43–50. DOI:10.1016/j.agee.2014.12.003.
  • Zhang XN, Lu YF, Yang T, Kronzucker HJ, Shi WM. 2019. Factors influencing the release of the biological nitrification inhibitor 1,9-decanediol from rice (oryza sativa L.) roots. Plant Soil. 436(1–2):253–265. DOI:10.1007/s11104-019-03933-1.
  • Zhu TB, Zhang J, Huang P, Suo L, Wang C, Ding ZW, Meng L, Zhou K, Hu Z. 2015. N2O emissions from banana plantations in tropical China as affected by the application rates of urea and a urease/nitrification inhibitor. Biol Fert Soils. 51(6):673–683. DOI:10.1007/s00374-015-1018-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.