434
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Vis-NIR-spectroscopy- and loss-on-ignition-based functions to estimate organic matter content of calcareous soils

, & ORCID Icon
Pages 962-980 | Received 14 Oct 2021, Accepted 25 Feb 2022, Published online: 09 Mar 2022

References

  • Arshad MA, Lowery B, Grossman B. 1996. Physical tests for monitoring soil quality. In: Doran JW, Jones AJ, editors. Methods for assessing soil quality. Madison (WI, USA): Soil Sci Soc Am; p. 123–141.
  • Askari MS, O’Rourke SM, Holden N. 2015. Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy. Geoderma. 243-244:80–91. doi:10.1016/j.geoderma.2014.12.012.
  • Ba Y, Liu J, Han J, Zhang X. 2020. Application of Vis-NIR spectroscopy for determination the content of organic matter in saline-alkali soils. Spectrochim Acta A Mol Biomol Spectrosc. 229:117863. doi:10.1016/j.saa.2019.117863.
  • Babaeian E, Homaee M, Montzka C, Vereecken H, Norouzi AA. 2015. Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadose Zone J. 14(3):vzj2014.07.0080. doi:10.2136/vzj2014.07.0080.
  • Bakr N, El-Ashry SM. 2018. Organic matter determination in arid region soils: loss-on-ignition versus wet oxidation. Commun Soil Sci Plant Anal. 49(20):2587–2601. doi:10.1080/00103624.2018.1526947.
  • Ball DF. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Eur J Soil Sci. 15(1):84–92. doi:10.1111/j.1365-2389.1964.tb00247.x.
  • Banaei MH.1998. Ministry of Agriculture. Soil moisture and temperature regime map of Iran. Tehran (Iran):Soil and Water Research Institute.
  • Bannayan M, Hoogenboom G. 2009. Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Res. 111(3):290–302. doi:10.1016/j.fcr.2009.01.007.
  • Baumann K, Schöning I, Schrumpf M, Ellerbrock RH, Leinweber P. 2016. Rapid assessment of soil organic matter: soil color analysis and Fourier transform infrared spectroscopy. Geoderma. 278:49–57. doi:10.1016/j.geoderma.2016.05.012.
  • Ben‐Dor E, Banin A. 1989. Determination of organic matter content in arid‐zone soils using a simple “loss‐on‐ignition” method. Commun Soil Sci Plant Anal. 20(15–16):1675–1695. doi:10.1080/00103628909368175.
  • Bilgili V, Akbas F, Van ES H. 2011. Combined use of hyperspectral VNIR reflectance spectroscopy and kriging to predict soil variables spatially. Precis Agric. 12(3):395–420. doi:10.1007/s11119-010-9173-6.
  • Bojko O, Kabala C. 2014. Loss-on-ignition as an estimate of total organic carbon in the mountain soils. Pol J Soil Sci. 47:71–79.
  • Bornemann L, Welp G, Brodowski S, Rodionov A, Amelung W. 2008. Rapid assessment of black carbon in soil organic matter using mid-infrared spectroscopy. Org Geochem. 39(11):1537–1544. doi:10.1016/j.orggeochem.2008.07.012.
  • Calderon F, Haddix M, Conant R, Magrini-Bair K, Paul E. 2013. Diffuse‐reflectance Fourier‐transform mid‐infrared spectroscopy as a method of characterizing changes in soil organic matter. Soil Sci Soc Am J. 77(5):1591–1600. doi:10.2136/sssaj2013.04.0131.
  • CAMO, Technologies Inc. 2013. The unscrambler appendices: method references. http://www.camo.com/TheUnscrambler/Appendices/The20Unscrambler%20Method%20References.
  • Davies BE. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Sci Soc Am J. 38(1):150–151. doi:10.2136/sssaj1974.03615995003800010046x.
  • Dhawale NM, Adamchuk PSO VI, Viscarra Rossel RA, Ismail AA, Kaur J, Kaur J. 2015. Proximal soil sensing of soil texture and organic matter with a prototype portable mid-infrared spectrometer. Eur J Soil Sci. 66(4):661–669. doi:10.1111/ejss.12265.
  • Dhawale NM, Adamchuk PSO VI, Viscarra Rossel RA, Viscarra Rossel RA. 2021. Evaluating the precision and accuracy of proximal soil vis–NIR sensors for estimating soil organic matter and texture. Soil Syst. 5(3):48. doi:10.3390/soilsystems5030048.
  • Enang RK, Yerima BPK, Kome GK, Van Ranst E. 2018. Assessing the effectiveness of the Walkley-Black method for soil organic carbon determination in Tephra soils of Cameroon. Commun Soil Sci Plant Anal. 49(19):2379–2386. doi:10.1080/00103624.2018.1510948.
  • Feng Y, Cui N, Gong D, Zhang Q, Zhao L. 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric Water Manag. 193:163–173. doi:10.1016/j.agwat.2017.08.003.
  • Gavili E, Moosavi A Akbar, and Moradi Choghamarani F. 2018. Cattle manure biochar potential for ameliorating soil physical characteristics and spinach response under drought. Arch Agron Soil Sci. 64(12):1714–1727. doi:10.1080/03650340.2018.1453925.
  • Gee GW, Bauder JW. 1986. Particle size analysis, hydrometer methods. In: Klute A, editor. Methods of soil analysis, part 1, physical and mineralogical methods. Madison (Wisconsin, USA): American Society of Agronomy and Soil Science Society of America; p. 383–411.
  • Gessesse TA, Khamzina A. 2018. How reliable is the Walkley-Black method for analyzing carbon-poor, semi-arid soils in Ethiopia? J Arid Environ. 153:98–101. doi:10.1016/j.jaridenv.2018.01.008.
  • Gomez C, Viscarra Rossel RA, McBratney AB. 2008. Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: an Australian case study. Geoderma. 146(3–4):403–411. doi:10.1016/j.geoderma.2008.06.011.
  • Hashemi SS, Baghernejad M, Owliaie HR, Najafi-Ghiri M. 2013. Effect of soil moisture regime on micromorphology of gypsum pedofeatures in soils of fars province. J Soil Water Conserv. 21:59–83.
  • Hermansen C, Knadel M, Moldrup P, Greve MH, Gislum R, de Jonge LW. 2016. Visible-near-infrared spectroscopy can predict the clay/organic carbon and mineral fines/organic carbon ratios. Soil Sci Soc Am J. 80(6):1486–1495. doi:10.2136/sssaj2016.05.0159.
  • Hobley EU, Prater I. 2018. Estimating soil texture from vis–NIR spectra. Eur J Soil Sci. 70(1):83–95. doi:10.1111/ejss.12733.
  • Hoogsteen MJ, Lantinga EA, Bakker E, Groot J, Tittonell P. 2015. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. Eur J Soil Sci. 66(2):320–328. doi:10.1111/ejss.12224.
  • Hoogsteen MJJ, Lantinga EA, Bakker EJ, Tittonell PA. 2018. An evaluation of the loss-on-ignition method for determining the soil organic matter content of calcareous soils. Commun Soil Sci Plant Anal. 49(13):1541–1552. doi:10.1080/00103624.2018.1474475.
  • Johannes A, Matter A, Schulin R, Weisskopf P, Baveye PC, Boivin P. 2017. Optimal organic carbon values for soil structure quality of arable soils. Does Clay Content Matter? Geoderma. 302:14–21.
  • Kasozi GN, Nkedi-Kizza P, Harris WG. 2009. Varied carbon content of organic matter in Histosols, spodosols, and carbonatic soils. Soil Sci Soc Am J. 73(4):1313–1318. doi:10.2136/sssaj2008.0070.
  • Khayamim F, Wetterlind J, Khademi H, Robertson J, Canod A, Stenberg B. 2015. Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan, Iran. J Near Infrared Spectrosc. 23(3):155–165. doi:10.1255/jnirs.1157.
  • Khormali F, Abtahi A. 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of fars Province, Southern Iran. Clay Miner. 38(4):511–527. doi:10.1180/0009855023740112.
  • Kogel-Knabner I. 2017. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol Biochem. 105:A3–A8. doi:10.1016/j.soilbio.2016.08.011.
  • Konen ME, Jacobs PM, Burras CL, Talaga BJ, Mason JA. 2002. Equations for predicting soil organic carbon using loss-on-ignition for North Central U.S. soils. Soil Sci Soc Am J. 66:1878–1881.
  • Kumar S, Ghotekar YS, Dadhwal VK. 2019. C-equivalent correction factor for soil organic carbon inventory by wet oxidation, dry combustion and loss on ignition methods in Himalayan region. J Earth Syst Sci. 128(3):62. doi:10.1007/s12040-019-1086-9.
  • Leytem AB, Mikkelsen RL. 2005. The nature of phosphorus in calcareous soils. Better Crops. 89:11–13.
  • Lin Y, Ye G, Kuzyakov Y, Liu D, Fan J, Ding D. 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol Biochem. 134:187–196. doi:10.1016/j.soilbio.2019.03.030.
  • Liu J, Han J, Zhang Y, Wang H, Kong H, Shi L. 2018. Prediction of soil organic carbon with different parent materials development using visible-near infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 204:33–39. doi:10.1016/j.saa.2018.06.018.
  • Liu Y, Liu Y, Chen Y, Zhang Y, Shi T, Wang J, Hong Y, Fei T, Zhang Y. 2019. The influence of spectral pretreatment on the selection of representative calibration samples for soil organic matter estimation using Vis-NIR reflectance spectroscopy. Remote Sens. 11(4):450. doi:10.3390/rs11040450.
  • Loeppert RH, Suarez DL. 1996. Carbonate and gypsum. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of soil analysis, part 3, chemical and microbiological properties. Madison (Wisconsin, USA): American Society of Agronomy and Soil Science Society of America; p. 437–474.
  • Martin PD, Malley DF, Manning G, Fuller L. 2002. Determination of soil organic carbon and nitrogen at the field level using near-infrared spectroscopy. Can J Soil Sci. 82(4):413–422. doi:10.4141/S01-054.
  • Martínez-García LB, Korthals G, Brussaard L, Jørgensen HB, De Deyn GB. 2018. Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties. Agric Ecosyst Environ. 263:7–17. doi:10.1016/j.agee.2018.04.018.
  • Martínez JM, Galantini JA, Duval ME, López FM, Iglesias JO. 2018. Estimating soil organic carbon in Mollisols and its particle-size fractions by loss-on-ignition in the semiarid and semihumid Argentinean Pampas. Geoderma Reg. 12:49–55. doi:10.1016/j.geodrs.2017.12.004.
  • MathWorks, Makers of MATLAB and Simulink. 2021. MATLAB & Simulink. [Accessed 2021 Apr 6]. https://www.mathworks.com
  • Mouazen AM, Saeys W, Xing J, De Baerdemaeker J, Ramon H. 2005. Near infrared spectroscopy for agricultural materials: an instrument comparison. J Near Infrared Spectrosc. 13(2):87–97. doi:10.1255/jnirs.461.
  • Mozaffari, H, Moosavi, AA, and Dematte, JAM 2022 . Estimating particle-size distribution from limited soil texture data: Introducing two new methods. Biosyst Eng. (In press). doi:10.1016/j.biosystemseng.2022.02.007
  • Mozaffari H, Moosavi AA, Sepaskhah AR. 2021a. Land use-dependent variation of near-saturated and saturated hydraulic properties in calcareous soils. Environ Earth Sci. 80(23):769. doi:10.1007/s12665-021-10078-x.
  • Mozaffari H, Rezaei M, Ostovari Y. 2021b. Soil sensitivity to wind and water erosion as affected by land use in southern Iran. Earth. 2(2):287–302. doi:10.3390/earth2020017.
  • MPB (Ministry of Programming and Budgeting). 1994. Economic and social status of Fars Province. Publication Centre for Informatics and Development Studies. Persian.
  • Mu Y, Saffarzadeh A, Shimaoka T. 2017. Influence of ignition process on mineral phase transformation in municipal solid waste incineration (MSWI) fly ash: implications for estimating loss-on-ignition (LOI). Waste Manage. 59:222–228. doi:10.1016/j.wasman.2016.09.028.
  • Munroe JS. 2019. Hydrogeomorphic controls on Holocene lacustrine loss-on-ignition records. J Paleolimnol. 61(1):53–68. doi:10.1007/s10933-018-0044-x.
  • Natural Resources and Forestry Organization of Fars Province. 2010. Detailed report of the Dorudzan Watershed. Shiraz (Iran): Fars Regional Water Authority; p. 15–125. Persian.
  • Nawar S, Mouazen AM. 2017. Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-Line Vis-NIR spectroscopy measurements of soil total nitrogen and total carbon. Sensors. 17(10):2428. doi:10.3390/s17102428.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of soil analysis, part 3, chemical and microbiological properties. Madison (Wisconsin, USA): American Society of Agronomy and Soil Science Society of America; p. 961–1010.
  • Nocita M, Stevens A, Toth G, Panagos P, van Wesemael B, Montanarella L. 2014. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol Biochem. 68:337–347. doi:10.1016/j.soilbio.2013.10.022.
  • Ostovari Y, Ghorbani-Dashtakia S, Bahrami HA, Dematte AM, Arthurd E, Panagos P, Panagos P. 2018. Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: a case study in a semi-arid region of Iran. Geoderma. 314:102–112. doi:10.1016/j.geoderma.2017.11.014.
  • Ostovari Y, Moosavi AA, Mozaffari H, Poppiel RR, Tayebi M, Demattê JAM. 2022. Chapter 32-Soil erodibility and its influential factors in the Middle East. In: Pourghasemi HR, editor. Computers in earth and environmental sciences. Elsevier; p. 441–454. doi:10.1016/C2020-0-03210-x.
  • Ostovari Y, Moosavi AA, Mozaffari H, Pourghasemi HR. 2021. RUSLE model coupled with RS-GIS for soil erosion evaluation compared with T value in Southwest Iran. Arab J Geosci. 14(2):110. doi:10.1007/s12517-020-06405-4.
  • Ostovari Y, Moosavi AA, Pourghasemi HR. 2020. Soil loss tolerance in calcareous soils of a semiarid region: evaluation, prediction, and influential parameters. Land Degrad Dev. 31(15):2156–2167. doi:10.1002/ldr.3597.
  • Pinheiro ÉFM, Ceddia MB, Clingensmith CM, Grunwald S, Vasques GM. 2017. Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the central Amazon. Remote Sens. 9(4):293. doi:10.3390/rs9040293.
  • Rahmati M, Weihermüller L, Vanderborght J, Pachepsky YA, Mao L, Sadeghi SH, Moosavi N, Kheirfam H, Montzka C, Van Looy K, et al. 2018. Development and analysis of the Soil Water Infiltration Global database. Earth Syst Sci Data. 10(3):1237–1263. doi:10.5194/essd-10-1237-2018.
  • Razzaghi F, Arthur E, Moosavi AA. 2021. Evaluating models to estimate cation exchange capacity of calcareous soils. Geoderma. 400:115221. doi:10.1016/j.geoderma.2021.115221.
  • Rezaee L, Moosavi AA, Davatgar N, Sepaskhah A. 2020a. Shrinkage-swelling characteristics and plasticity indices of paddy soils: spatial variability and their influential parameters. Arch Agron Soil Sci. 66(14):2005–2025. doi:10.1080/03650340.2019.1706169.
  • Rezaee L, Moosavi AA, Davatgar N, Sepaskhah AR. 2020b. Soil quality indices of paddy soils in Guilan province of northern Iran: spatial variability and their influential parameters. Ecol Indic. 117:106566. doi:10.1016/j.ecolind.2020.106566.
  • Rhoades JD. 1996. Salinity: electrical conductivity and total dissolved salts. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of soil analysis, part 3, chemical and microbiological properties. Madison (Wisconsin, USA): American Society of Agronomy and Soil Science Society of America; p. 417–436.
  • Ritter A, Muñoz-Carpena R. 2013. Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol. 480:33–45. doi:10.1016/j.jhydrol.2012.12.004.
  • Rosell R, Gasparoni JC, Galantini JA. 2001. Soil organic matter evaluation. In: Lal R, Kimble JM, Follett RF, Stewart BA, editors. Assessment methods for soil carbon. Boca Raton (FL): Series Advances in Soil Science, CRC Press; p. 311–322.
  • Salehi MH, Hashemi Beni O, Beigi Harchegani H, Esfandiarpour I, Motaghian HR. 2011. Refining soil organic matter determination by loss-on-ignition. Pedosphere. 21(4):473–482. doi:10.1016/S1002-0160(11)60149-5.
  • Santra P, Sahoo RN, Das BS, Samal RN, Pattanaik AK, Gupta VK. 2009. Estimation of soil hydraulic properties using proximal spectral reflectance in visible, near-infrared, and shortwave-infrared (VIS-NIR-SWIR) region. Geoderma. 152(3–4):338–349. doi:10.1016/j.geoderma.2009.07.001.
  • Savitzky A, Golay JJE. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 36(8):1627–1639. doi:10.1021/ac60214a047.
  • Sepahvand H, Mirzaeitalarposhti R, Beiranvand K, Feizian M, Müeller T. 2019. Prediction of soil carbon levels in calcareous soils of Iran by mid-infrared reflectance spectroscopy. Environ Pollut Bioavailab. 31(1):9–17. doi:10.1080/09542299.2018.1549961.
  • Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12th. Washington (DC): USDA-Natural Resource Conservation Service.
  • Soriano-Disla JM, Janik LJ, Viscarra Rossel RA, MacDonald LM, McLaughlin MJ. 2014. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl Spectrosc Rev. 49(2):139–186. doi:10.1080/05704928.2013.811081.
  • Stenberg B. 2010. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma. 158(1–2):15–22. doi:10.1016/j.geoderma.2010.04.008.
  • Tayebi M, Fim Rosas JT, Mendes W, Poppiel RR, Ostovari Y, Ruiz LFC, Dos Santos NV, Cerri CEP, Silva SHG, Curi N, et al. 2021. Drivers of organic carbon stocks in different LULC history and along soil depth for a 30 years image time series. Remote Sens. 13(11):2223. doi:10.3390/rs13112223.
  • Thomas GW. 1996. Soil pH and soil asidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of soil analysis, part 3, chemical and microbiological properties. Madison (Wisconsin, USA): American Society of Agronomy and Soil Science Society of America; p. 475–490.
  • van der Wal A, de Boer W. 2017. Dinner in the dark: illuminating drivers of soil organic matter decomposition. Soil Biol Biochem. 105:45–48. doi:10.1016/j.soilbio.2016.11.006.
  • Viscarra Rossel RA. 2007. Robust modelling of soil diffuse reflectance spectra by “bagging-partial least squares regression”. J Near Infrared Spectrosc. 15:37–47.
  • Walkley A, Black IA. 1934. An examination of Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi:10.1097/00010694-193401000-00003.
  • Walter E, Dean JR. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol. 44:242–248.
  • Wilding LG 1985. Soil spatial variability: its documentation, accommodation and implication to soil surveys. In: Nielsen DR, Bouma J, editors. Soil Spatial Variability Proceedings of a Workshop of the ISSS and the SSA. Wageningen, USA: Las Vegas PUDOC; p. 166–187.
  • Wright AL, Wang Y, Reddy KR. 2008. Loss-on-ignition method to assess soil organic carbon in calcareous everglades wetlands. Commun Soil Sci Plant Anal. 39(19–20):3074–3083. doi:10.1080/00103620802432931.
  • Xu S, Zhao Y, Wang M, Shi X. 2018. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis-NIR spectroscopy. Geoderma. 310:29–43. doi:10.1016/j.geoderma.2017.09.013.
  • Zahedifar M. 2017. Sequential extraction of zinc in the soils of different land use types as influenced by wheat straw derived biochar. J Geochem Explor. 182:22–31. doi:10.1016/j.gexplo.2017.08.007.
  • Zahedifar M, and Moosavi A A. 2017. Modeling desorption kinetics of the native and applied zinc in biochar-amended calcareous soils of different land uses. Environ Earth Sci. 76:16. doi:10.1007/s12665-017-6895-z.
  • Žížala D, Zádorová T, Kapička J. 2017. Assessment of soil degradation by erosion based on analysis of soil properties using aerial hyperspectral images and ancillary data, Czech Republic. Remote Sens. 9(1):28. doi:10.3390/rs9010028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.