200
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential application of Chlorella sp. biomass cultivated in landfill leachate as agricultural fertilizer

, , &
Pages 1193-1208 | Received 29 Aug 2021, Accepted 29 Apr 2022, Published online: 05 May 2022

References

  • Abdelhafez AA, Abbas MHH, Attia TMS, El Bably W, Mahrous SE. 2018. Mineralization of organic carbon and nitrogen in semi-arid soils under organic and inorganic fertilization. Environ Technol Innov. 9:243–253. doi:10.1016/j.eti.2017.12.011.
  • Agwa OK, Ogugbue CJ, Williams EE. 2017. Field evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. Int J Agric Res. 12(4):181–189. doi:10.3923/ijar.2017.181.189.
  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C. 1974. Chemical analysis of ecological materials. Open J Ecol. 5:9.
  • Alobwede E, Leake JR, Pandhal J. 2019. Circular economy fertilization: testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma. 334:113–123. doi:10.1016/j.geoderma.2018.07.049.
  • American Public Health Association [APHA]. 2005. Standard methods for the examination of water and wastewater. 21st. Washington (DC): American Water Works Association, Water Environment Federation.
  • Andersen RA. 2005. Algal Culturing Techniques. Oxford: Elsevier Academic Press.
  • Anderson TH, Domsch AK. 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem. 25(3):393–395. doi:10.1016/0038-0717(93)90140-7.
  • Aslan S, Kapdan IK. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng. 28:64–70. doi:10.1016/j.ecoleng.2006.04.003.
  • ASTM D 422 (American Society for Testing and Materials). 2007. Standard test method for particle-size analysis of soil. Annual Book of ASTM Standards; p. 2–7.
  • Beuckels A, Smolders E, Muylaert K. 2015. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 77:98–106. doi:10.1016/j.watres.2015.03.018.
  • Bhatt AH, Karanjekar RV, Altouqi S, Sattler ML, Sahadat Hossain MD, Chen VP. 2017. Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: exploration of a Mars statistical approach. Environ Technol Innov. 8:1–16. doi:10.1016/j.eti.2017.03.003.
  • Bremner JM. 1960. Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci. 55(1):11–33. doi:10.1017/S0021859600021572.
  • Carmo DLD, Silva CA, Lima JMD, Pinheiro GL. 2016. Electrical conductivity and chemical composition of soil solution: comparison of solution samplers in tropical soils. Rev Bras Ciênc Solo. 40.
  • Cheng H, Zhang Y, Meng A, Li Q. 2007. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city. Environ Sci Technol. 41:7509–7515. doi:10.1021/es071416g.
  • Choi HJ, Lee SM. 2013. Performance of Chlorella vulgaris for the removal of ammonia-nitrogen from wastewater. Environ Eng Res. 18(4):235–239. doi:10.4491/eer.2013.18.4.235.
  • Chouliaras N, Gravanis F, Vasilakoglou I, Gougoulias N, Vagelas I, Kapotis T, Wogiatzi E. 2007. The effect of basil (Ocimum basilicum L.) on soil organic matter biodegradation and other soil chemical properties. J Sci Food Agric. 87(13):2416–2419. doi:10.1002/jsfa.2907.
  • Clarholm M, Skyllberg U, Rosling A. 2015. Organic acid induced release of nutrients from metal-stabilized soil organic matter–the unbutton model. Soil Biol Biochem. 84:168–176. doi:10.1016/j.soilbio.2015.02.019.
  • de Siqueira Castro J, Calijuri ML, Mattiello EM, Ribeiro VJ, Assemany PP. 2020. Algal biomass from wastewater: soil phosphorus bioavailability and plants productivity. Sci Total Environ. 711:135088. doi:10.1016/j.scitotenv.2019.135088.
  • Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D. 2016. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep. 11:18–26. doi:10.1016/j.btre.2016.04.003.
  • Depraetere O, Foubert I, Muylaert K. 2013. Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis. Bioresour Technol. 148:366–372. doi:10.1016/j.biortech.2013.08.165.
  • Dogaris I, Ammar E, Philippidis GP. 2020. Prospects of integrating algae technologies into landfill leachate treatment. World J Microbiol Biotechnol. 36:39. doi:10.1007/s11274-020-2810-y.
  • Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC. 2013. Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences. 10(2):821–838. doi:10.5194/bg-10-821-2013.
  • Environmental regulations for reuse and recycling of waste water. 2010. Bulten No 535, Deputy Director of strategic control. Iran:Ministry of Energy.
  • Eze VC, Velasquez-Orta SB, Hernández-García A, Monje-Ramírez I, Orta-Ledesma MT. 2018. Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Res. 32:131–141. doi:10.1016/j.algal.2018.03.015.
  • Gao QT, Wong YS, Tam NFY. 2011. Removal and biodegradation of nonylphenol by different Chlorella species. Mar Pollut Bull. 63:445–451. doi:10.1016/j.marpolbul.2011.03.030.
  • Glibert PM, Manager R, Sobota DJ, Bouwman L. 2014. The Haber-Bosch-Harmful algal bloom (HB-HAB) link. Environ Res Lett. 9:105001. doi:10.1088/1748-9326/9/10/105001.
  • Gougoulias N, Papapolymerou G, Karayannis V, Spiliotis X, Chouliaras N. 2018. Effects of manure enriched with algae Chlorella vulgaris on soil chemical properties. Soil Water Res. 13(1):51–59. doi:10.17221/260/2016-SWR.
  • Havlin J, Tisdale S, Nelson W, Beaton J. 2013. Soil fertility and fertilizers. 8th Edition.
  • Hayouni EA, Abedrabba M, Bouix M, Hamdi M. 2007. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem. 105(3):1126–1134. doi:10.1016/j.foodchem.2007.02.010.
  • Heffer P, Prud’homme M 2016. Fertilizer outlook 2016-2010. 84th IFA Annual Conference (Accessed 2016 Sept 23). www.fertilizer.org
  • Innangi M, Schenk MK, d’Alessandro F, Pinto S, Menta C, Papa S, Fioretto A. 2015. Field and microcosms decomposition dynamics of European beech leaf litter: influence of climate, plant material and soil with focus on N and Mn. Appl Soil Ecol. 93:88–97. doi:10.1016/j.apsoil.2015.04.007.
  • Jenkinson DS, Ladd JN. 1981. Microbial biomass in soil: measurement and turnover. Soil Biochem. 5(1):415–471.
  • Kadlec RH, Wallace SD. 2009. Treatment Wetlands. Boca Raton (Florida, USA): CRC Press.
  • Khanzada ZT. 2020. Phosphorus removal from landfill leachate by microalgae. Biotechnol Rep. 7(25):e00419. doi:10.1016/j.btre.2020.e00419.
  • Kumar MS, Miao ZH, Wyatt SK. 2010. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour Technol. 101:6012–6018. doi:10.1016/j.biortech.2010.02.080.
  • Kuo S. 1996. Phosphorus. In: Sparks DL, ed. Methods of soil analysis. (Part 3) chemical methods. Madison (Wis): Soil Science Society of America; p. 869–920.
  • Kwon G, Nam JH, Kim DM, Song C, Jahang D. 2020. Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewater. Environ Eng Res. 25(2):135–146. doi:10.4491/eer.2018.442.
  • Lebrun JD, Trinsoutrot-Gattin I, Vinceslas-Akpa M, Bailleul C, Brault A, Mougin C, Laval K. 2012. Assessing impacts of copper on soil enzyme activities in regard to their natural spatiotemporal variation under long-term different land uses. Soil Biol Biochem. 49:150–156. doi:10.1016/j.soilbio.2012.02.027.
  • Lerda D. 2011. Polycyclic aromatic hydrocarbons (PAHs): factsheet. 4th ed. JRC 66955 –Joint Research Centre – Institute for Reference Materials and Measurements, European Union Reference Laboratory (EU-RL); p. 1–10.
  • Lim SL, Wu TY, Lim PN, Shak KPY. 2015. The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric. 95(6):1143–1156. doi:10.1002/jsfa.6849.
  • Lin X, Zhou W, Zhu D, Chen H, Zhang Y. 2006. Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice. Field Crop Res. 96:448–454. doi:10.1016/j.fcr.2005.09.003.
  • Loeppert RH, Suarez DL. 1996. Carbonate and gypsum. Methods Soil Anal: Part 3 Chem Methods. 5:437–474.
  • Mandal SM, Chakraborty D, Dey S. 2010. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 5(4):359–368. doi:10.4161/psb.5.4.10871.
  • McClung G, Frankenberger WT. 1987. Nitrogen mineralization rates in saline vs. salt-amended soils. Plant Soil. 104(1):13–21. doi:10.1007/BF02370619.
  • Mkhabela M, Warman P. 2005. The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. Agric Ecosyst Environ. 106(1):57–67. doi:10.1016/j.agee.2004.07.014.
  • Moheimani NR, McHenry MP, de Boer K, Bahri P, eds. 2015. Biomass and biofuels from microalgae. Biofuel biorefinery technologies. Springer International Publishing.
  • Mulbry W, Westhead EK, Pizarro C, Sikora L. 2005. Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol. 96:451–458. doi:10.1016/j.biortech.2004.05.026.
  • Nasini L, Gigliotti G, Balduccini MA, Federici E, Cenci G, Proietti P. 2013. Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europaea L.) tree activity. Agric Ecosyst Environ. 164:292–297. doi:10.1016/j.agee.2012.10.006.
  • Navarro AF, Cegarra J, Roig A, Garcia D. 1993. Relationships between organic matter and carbon contents of organic wastes. Bioresour Technol. 44(3):203–207. doi:10.1016/0960-8524(93)90153-3.
  • Nawaz T, Rahman A, Pan S, Dixon K, Petri B, Selvaratnam T. 2020. A review of landfill leachate treatment by microalgae: current status and future directions. Processes. 8:384. doi:10.3390/pr8040384.
  • Nisha R, Kaushik A, Kaushik CP. 2007. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma. 138:49–56. doi:10.1016/j.geoderma.2006.10.007.
  • Olsen SR, Cloe V, Watnebe FS, Pean LA. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USA: USDA; p. 939.
  • Page AL, Miller RH, Keeney DR. 1982. Methods of soil analyses. American Soil Science Agronomy Monograph; p. 1159.
  • Pereira SFL, Gonçalves AL, Moreira FC, Silva TFCV, Vilar VJP, Pires JCM. 2016. Nitrogen removal from landfill leachate by microalgae. Int J Mol Sci. 17:1926. doi:10.3390/ijms17111926.
  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45(1):11–36. doi:10.1016/j.watres.2010.08.037.
  • Pham TL, Bui MH. 2020. Removal of nutrients from fertilizer plant wastewater using Scenedesmus sp.: formation of bioflocculation and enhancement of removal efficiency. J Chem: 9. Article ID 8094272. doi:10.1155/2020/8094272
  • Possinger AR, Amador JA. 2016. Preliminary evaluation of seaweed application effects on soil quality and yield of sweet corn (Zea mays L.). Commun Soil Sci Plant Anal. 47:121–135. doi:10.1080/00103624.2015.1104338.
  • Qiu R, Gao S, Lopez PA, Ogden KL. 2017. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res. 28:192–199. doi:10.1016/j.algal.2017.11.004.
  • Rao DLN, Aparna K, Mohanty SR. 2019. Microbiology and biochemistry of soil organic matter, carbon sequestration and soil health. Indian J Fertil. 15:124–138.
  • Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, Nain L, Shivay YS, Nain L. 2016. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollut Res. 23(7):6608–6620. doi:10.1007/s11356-015-5884-6.
  • Richardson AE, Hocking PJ, Simpson RJ, George TS. 2009. Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci. 60:124–143. doi:10.1071/CP07125.
  • Rubín E, Rodríguez P, Herrero R, Sastre de Vicente ME. 2006. Biosorption of phenolic compounds by the brown alga Sargassum muticum. J Chem Technol Biotechnol: Int Res Proc, Environ Clean Technol. 81(7):1093–1099. doi:10.1002/jctb.1430.
  • SAS Institute. 2014. SAS 9.4 output delivery system: user’s guide. SAS institute.
  • Schreiber C, Schiedung H, Harrison L, Briese C, Ackermann B, Kant J, Schrey SD, Hofmann D, Singh D, Ebenhöh O, et al. 2018. Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. J Appl Phycol. 30:2827–2836. doi:10.1007/s10811-018-1390-9.
  • Sforza E, Khairallah MHS, Al Amara AB. 2015. Exploitation of urban landfill leachate as nutrient source for microalgal biomass production. Chem Eng Trans. 43:373–378.
  • Shabani M, Sayadi MH, Rezaei MR. 2016. CO2 biosequestration by Chlorella vulgaris and Spirulina platensis in response to different levels of salinity and CO2. Proc Int Acad Ecol Environ Sci. 6(2):53–61.
  • Sierra J, Mart E, Montserrat G, Cruanas R, Garau M. 2001. Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci Total Environ. 279(1–3):207–214. doi:10.1016/S0048-9697(01)00783-5.
  • Tang CC, Tian Y, Liang H, Zuo W, Wang ZW, Zhang J, He ZW. 2018. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae assisted sequencing batch biofilm reactor. Bioresour Technol. 250:185–190. doi:10.1016/j.biortech.2017.11.028.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi:10.1097/00010694-193401000-00003.
  • Wang R, Peng B, Huang K. 2015. The research progress of CO2 sequestration by algal bio-fertilizer in China. J CO2 Util. 11:67–70. doi:10.1016/j.jcou.2015.01.007.
  • Wuang SC, Khin MC, Chua PQD, Luo YD. 2016. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 15:59–64. doi:10.1016/j.algal.2016.02.009.
  • Xiong JQ, Kurade MB, Jeon BH. 2017. Biodegradation of levofloxacin by an acclimated freshwater microalga Chlorella vulgaris. Chem Eng. 313:1251–1257. doi:10.1016/j.cej.2016.11.017.
  • Yu L, Chen S, Chen W, Wu J. 2020. Experimental investigation and mathematical modeling of the competition among the fast-growing “r-strategists” and the slow-growing “K-strategists” ammonium-oxidizing bacteria and nitrite-oxidizing bacteria in nitrification. Sci Total Environ. 702:135049. doi:10.1016/j.scitotenv.2019.135049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.