326
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Long-term fertilization impacts on soil phosphorus forms using XANES and NMR spectroscopy

, , , , &
Pages 1266-1281 | Received 25 Oct 2021, Accepted 23 May 2022, Published online: 03 Jun 2022

References

  • Abdala DB, Gatiboni LC, Schmitt DE, Mumbach GL, Dall’Orsoletta DJ, Bonfada EB, Veiga M. 2020. Phosphorus speciation and iron mineralogy in an oxisol after 11 years of pig slurry application. Sci Total Environ. 743:140487. doi:10.1016/j.scitotenv.2020.140487
  • Ajiboye B, Akinremi OO, Hu Y, Flaten DN. 2007. Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. J Environ Qual. 36(6):1563–1576. doi:10.2134/jeq2006.0541.
  • Ajiboye B, Akinremi OO, Hu Y, Jürgensen A. 2008. XANES speciation of phosphorus in organically amended and fertilized vertisol and mollisol. Soil Sci Soc Am J. 72(5):1256–1262. doi:10.2136/sssaj2007.0078.
  • Aleixo S, Gama-Rodrigues AC, Gama-Rodrigues EF, Campello EFC, Silva EC, Schripsema J. 2020. Can soil phosphorus availability in tropical forest systems be increased by nitrogen-fixing leguminous trees? Sci Total Environ. 712:136405. doi:10.1016/j.scitotenv.2019.136405
  • Anderson G, Williams EG, Moir JO. 1974. A comparison of the sorption of inorganic orthophosphate and inositol hexaphosphate by six acid soils. Eur J Soil Sci. 25(1):51–62. doi:10.1111/j.1365-2389.1974.tb01102.x.
  • Annaheim KE, Doolette AL, Smernik RJ, Mayer J, Oberson A, Frossard E, Bünemann EK. 2015. Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by 31P NMR spectroscopy and enzyme additions. Geoderma. 257–258:67–77. doi:10.1016/j.geoderma.2015.01.014
  • Bai Z, Li H, Yang X, Zhou B, Shi X, Wang B, Li D, Shen J, Chen Q, Qin W, et al. 2013. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil. 372(1–2):27–37. doi:10.1007/s11104-013-1696-y.
  • Baumann K, Glaser K, Mutz J-E, Karsten U, MacLennan A, Hu Y, Michalik D, Kruse J, Eckhardt K-U, Schall P, et al. 2017. Biological soil crusts of temperate forests: their role in P cycling. Soil Biol Biochem. 109:156–166. doi:10.1016/j.soilbio.2017.02.011
  • Beauchemin S, Hesterberg D, Chou J, Beauchemin M, Simard RR, Sayers DE. 2003. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. J Environ Qual. 32(5):1809–1819. doi:10.2134/jeq2003.1809.
  • Cade-Menun BJ. 2015. Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma. 257–258:102–114. doi:10.1016/j.geoderma.2014.12.016
  • Cade-Menun BJ, Navaratnam JA, Walbridge MR. 2006. Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environ Sci Technol. 40(24):7874–7880. doi:10.1021/es061843e.
  • Cade-Menun BJ, Preston CM. 1996. A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci. 161(11):770–785. doi:10.1097/00010694-199611000-00006.
  • Chapuis-Lardy L, Brossard M, Quiquampoix H. 2001. Assessing organic phosphorus status of Cerrado oxisols (Brazil) using 31P-NMR spectroscopy and phosphomonoesterase activity measurement. Can J Soil Sci. 81(5):591–601. doi:10.4141/S00-079.
  • Chen A, Arai Y. 2019. Functional group specific phytic acid adsorption at the ferrihydrite-water interface. Environ Sci Technol. 53(14):8205–8215. doi:10.1021/acs.est.9b01511.
  • Condron LM, Newman S. 2011. Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J Soil Sediment. 11(5):830–840. doi:10.1007/s11368-011-0363-2.
  • Cooper J, Lombardi R, Boardman D, Carliell-Marquet C. 2011. The future distribution and production of global phosphate rock reserves. Resour Conserv Recy. 57:78–86. doi:10.1016/j.resconrec.2011.09.009
  • Deiss L, de Moraes A, Maire V. 2018. Environmental drivers of soil phosphorus composition in natural ecosystems. Biogeosciences. 15(14):4575–4592. doi:10.5194/bg-15-4575-2018.
  • Doolette AL, Smernik RJ, Dougherty WJ. 2009. Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds. Soil Sci Soc Am J. 73(3):919–927. doi:10.2136/sssaj2008.0192.
  • Eriksson AK, Gustafsson JP, Hesterberg D. 2015. Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden. Geoderma. 241–242:68–74. doi:10.1016/j.geoderma.2014.10.023
  • Gatiboni LC, Brunetto G, Rheinheimer DS, Kaminski J, Pandolfo CM, Veiga M, Flores AFC, Lima MAS, Girotto E, Copetti ACC. 2013. Spectroscopic quantification of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization. Rev Bras Ciênc Solo. 37(3):640–648. doi:10.1590/S0100-06832013000300010.
  • Gatiboni LC, Rheinheimer DS, Flores FC, Anghinoni I, Kaminski J, Lima MAS. 2005. Phosphorus forms and availability assessed by 31P-NMR in successively cropped soil. Commun Soil Sci Plant Anal. 36(19–20):2625–2640. doi:10.1080/00103620500301917.
  • Gatiboni LC, Souza Junior AA, Dall’Orsoletta DJ, Mumbach GL, Kulesza SB, Abdala DB. 2021. Phosphorus speciation in soils with low to high degree of saturation due to swine slurry application. J Environ Manage. 282:111553. doi:10.1016/j.jenvman.2020.111553
  • Halajnia A, Haghnia GH, Fotovat A, Khorasani R. 2009. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma. 150(1–2):209–213. doi:10.1016/j.geoderma.2009.02.010.
  • Hansen JC, Cade-Menun BJ, Strawn DG. 2004. Phosphorus speciation in manure-amended alkaline soil. J Environ Qual. 33(4):1521–1527. doi:10.2134/jeq2004.1521.
  • He Z, Honeycutt CW, Cade-Menun BJ, Senwo ZN, Tazisong IA. 2008. Phosphorus in poultry litter and soil: enzymatic and nuclear magnetic resonance characterization. Soil Sci Soc Am J. 72(5):1425–1433. doi:10.2136/sssaj2007.0407.
  • He Z, Pagliari PH, Waldrip HM. 2016. Applied and environmental chemistry of animal manure: a review. Pedosphere. 26(6):779–816. doi:10.1016/S1002-0160(15)60087-X.
  • Huang L, Jia X, Zhang G, Shao M. 2017. Soil organic phosphorus transformation during ecosystem development: a review. Plant Soil. 417(1 –2):17–42. doi:10.1007/s11104-017-3240-y.
  • Jiang X, Arai Y. 2018. Effect of NaOH-EDTA extraction time on the degradation of phosphate compounds. Geoderma. 324:77–79. doi:10.1016/j.geoderma.2018.03.013
  • Johnston AE, Richards IR. 2003. Effectiveness of different precipitated phosphates as phosphorus sources for plant. Soil Use Manage. 19(1):45–49. doi:10.1111/j.1475-2743.2003.tb00278.x.
  • Kar G, Hilger D, Schoenau JJ, Peak D. 2017. Effects of plant growth and time on phosphorus speciation in a manure-amended Prairie soil under controlled conditions. Rhizosphere. 4:1–8. doi:10.1016/j.rhisph.2017.05.004
  • Kar G, Hundal LS, Schoenau JJ, Peak D. 2011. Direct chemical speciation of P in sequential chemical extraction residues using P K-Edge X-ray absorption near-edge structure spectroscopy. Soil Sci. 176(11):589–595. doi:10.1097/SS.0b013e31823939a3.
  • Klotzbücher A, Kaiser K, Klotzbücher T, Wolff M, Mikutta R. 2019. Testing mechanisms underlying the Hedley sequential phosphorus extraction of soils. J Plant Nutr Soil Sci. 182(4):570–577. doi:10.1002/jpln.201800652.
  • Koch M, Kruse J, Eichler-Löbermann B, Zimmer D, Willbold S, Leinweber P, Siebers N. 2018. Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: evidence from sequential fractionation, P K-edge XANES, and 31P NMR spectroscopy. Geoderma. 316:115–126. doi:10.1016/j.geoderma.2017.12.003
  • Li C, Zhang P, Zhang J, Zhu P, Wang L. 2021. Forms, transformations, and availability of phosphorus after 32 years of manure and mineral fertilization in a Mollisol under continuous maize cropping. Arch Agron Soil Sci. 67(9):1256–1271. doi:10.1080/03650340.2020.1787385.
  • Liang X, Jin Y, He M, Liu Y, Hua G, Wang S, Tian G. 2017. Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates. Agric Ecosyst Environ. 237:173–180. doi:10.1016/j.agee.2016.12.033
  • Liu J, Han C, Zhao Y, Yang J, Cade-Menun BJ, Hu Y, Li J, Liu H, Sui P, Chen Y, et al. 2020. The chemical nature of soil phosphorus in response to long-term fertilization practices: implications for sustainable phosphorus management. J Clean Prod. 272:123093. doi:10.1016/j.jclepro.2020.123093
  • Liu J, Hu Y, Yang J, Abdi D, Cade-Menun BJ. 2015. Investigation of soil legacy phosphorus transformation in long-term agricultural fields using sequential fractionation, P K-edge XANES and solution P-NMR spectroscopy. Environ Sci Technol. 49(1):168–176. doi:10.1021/es504420n.
  • Liu J, Sui P, Cade-Menun BJ, Hu Y, Yang J, Huang S, Ma Y. 2019. Molecular-level understanding of phosphorus transformation with long-term phosphorus addition and depletion in an alkaline soil. Geoderma. 353:116–124. doi:10.1016/j.geoderma.2019.06.024
  • Liu J, Yang J, Cade-Menun BJ, Hu Y, Li J, Peng C, Ma Y. 2017. Molecular speciation and transformation of soil legacy phosphorus with and without long-term phosphorus fertilization: insights from bulk and microprobe spectroscopy. Sci Rep. 7(1):15354. doi:10.1038/s41598-017-13498-7.
  • Luo L, Ma Y, Sanders RL, Xu C, Li J, Myneni SCB. 2017. Phosphorus speciation and transformation in long-term fertilized soil evidence from chemical fractionation and P K-edge XANES spectroscopy. Nutr Cycl Agroecosys. 107(2):215–226. doi:10.1007/s10705-017-9830-5.
  • McDowell RW, Cade-Menun B, Stewart I. 2007. Organic phosphorus speciation and pedogenesis: analysis by solution 31P nuclear magnetic resonance spectroscopy. Euro J Soil Sci. 58(6):1348–1357. doi:10.1111/j.1365-2389.2007.00933.x.
  • Nair VD, Sollenberger LE, Harris WG, Sharpley AN, Freitas AM, Dubeux JCBD Jr, Rodriguez NA. 2020. Mining of soil legacy phosphorus without jeopardizing crop yield. Agrosyst Geosci Environ. 3(1):e20024. doi:10.1002/agg2.20056.
  • Prietzel J, Klysubun W. 2018. Phosphorus K-edge XANES spectroscopy has probably often underestimated iron oxyhydroxide-bound P in soils. J Synchrotron Radiat. 25(6):1736–1744. doi:10.1107/S1600577518013334.
  • Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 12(4):537–541. doi:10.1107/S0909049505012719.
  • Sato S, Solomon D, Hyland C, Ketterings QM, Lehmann J. 2005. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ Sci Technol. 39(19):7485–7491. doi:10.1021/es0503130.
  • Schmieder F, Bergström L, Riddle M, Gustafsson J-P, Klysubun W, Zehetner F, Condron L, Kirchmann H. 2018. Phosphorus speciation in a long-term manure-amended soil profile – evidence from wet chemical extraction, 31P-NMR and P K-edge XANES spectroscopy. Geoderma. 322:19–27. doi:10.1016/j.geoderma.2018.01.026
  • Singh-Varinderpal DNS, Kumar-Raj BBS. 2006. Long-term effects of inorganic fertilizers and manure on phosphorus reaction products in a Typic Ustochrept. Nutr Cycl Agroecosys. 76(1):29–37. doi:10.1007/s10705-006-9038-6.
  • Tuntrachanida J, Wisawapipat W, Aramrak S, Chittamart N, Klysubun W, Amonpattaratkit P, Duboc O, Wenzel WW. 2022. Combining spectroscopic and flux measurement techniques to determine solid-phase speciation and solubility of phosphorus in agricultural soils. Geoderma. 410:115677. doi:10.1016/j.geoderma.2021.115677
  • Turner BL. 2004. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual. 33(2):757–766. doi:10.2134/jeq2004.7570.
  • Turner BL, Haygarth PM. 2005. Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci Total Environ. 344(1–3):27–36. doi:10.1016/j.scitotenv.2005.02.003.
  • van der Bom FJT, McLaren TI, Doolette AL, Magid J, Frossard E, Oberson A, Jensen LS. 2019. Influence of long-term phosphorus fertilisation history on the availability and chemical nature of soil phosphorus. Geoderma. 355:113909. doi:10.1016/j.geoderma.2019.113909
  • Wang J, Chu G. 2015. Phosphate fertilizer form and application strategy affect phosphorus mobility and transformation in a drip-irrigated calcareous soil. J Plant Nutr Soil Sci. 178(6):914–922. doi:10.1002/jpln.201500339.
  • Wei K, Bao H, Huang S, Chen L. 2017. Effects of long-term fertilization on available P, P composition and phosphatase activities in soil from the Huang-Huai-Hai Plain of China. Agric Ecosyst Environ. 237:134–142. doi:10.1016/j.agee.2016.12.030
  • Wei K, Chen Z, Zhu A, Zhang J, Chen L. 2014. Application of 31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices. Soil Till Res. 138:35–43. doi:10.1016/j.still.2014.01.001
  • Xin X, Zhang X, Chu W, Mao J, Yang W, Zhu A, Zhang J, Zhong X. 2019. Characterization of fluvo-aquic soil phosphorus affected by long-term fertilization using solution 31P NMR spectroscopy. Sci Total Environ. 692:89–97. doi:10.1016/j.scitotenv.2019.07.221
  • Zhang G, Chen Z, Zhang A, Chen L, Wu Z, Ma X. 2014. Phosphorus composition and phosphatase activities in soils affected by long-term application of pig manure and inorganic fertilizers. Commun Soil Sci Plant Anal. 45(14):1866–1876. doi:10.1080/00103624.2014.909831.
  • Zhang J, Dou S, Song X. 2009. Effect of long-term combined nitrogen and phosphorus fertilizer application on 13C CPMAS NMR spectra of humin in a typic Hapludoll of Northeast China. Euro J Soil Sci. 60(6):966–973. doi:10.1111/j.1365-2389.2009.01191.x.
  • Zhang P, Li C, Xie X, Gao Q, Zhang J, Wang L. 2019a. Integrated soil-crop system management increases phosphorus concentrations and bioavailability in a Primosol. J Soil Sci Plant Nut. 19(2):357–367. doi:10.1007/s42729-019-00036-9.
  • Zhang X, Gao H, Peng C, Li Q, Zhu P, Gao Q. 2019b. Variation trend of soil organic carbon, total nitrogen and the stability of maize yield in black soil under long-term organic fertilization. J Plant Nut Fertilizers. 25(9):1473–1481. doi:10.11674/zwyf.18390.
  • Zhang Y, Finn D, Bhattacharyya R, Dennis PG, Doolette AL, Smernik RJ, Dalal RC, Meyer G, Lombi E, Klysubun W, et al. 2021a. Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils. Geoderma. 393:115010. doi:10.1016/j.geoderma.2021.115010
  • Zhang Y, Gao W, Luan H, Tang J, Li R, Li M, Zhang H, Huang S. 2021b. Long-term organic substitution management affects soil phosphorus speciation and reduces leaching in greenhouse vegetable production. J Clean Prod. 327:129464. doi:10.1016/j.jclepro.2021.129464
  • Zheng L, Zhao Y, Tang K, Ma C, Hong C, Han Y, Cui M, Guo Z. 2014. A new experiment station on beamline 4B7A at Beijing Synchrotron Radiation Facility. Spectrochim Acta B. 101:1–5. doi:10.1016/j.sab.2014.07.006
  • Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ. 612:522–537. doi:10.1016/j.scitotenv.2017.08.095

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.