217
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Soil biochemical properties and nutritional quality of rice cultivated in acidic inceptisols using long-term organic farming practices

, , , ORCID Icon, , , , , , , ORCID Icon, & show all
Pages 1282-1297 | Received 03 Jul 2021, Accepted 26 May 2022, Published online: 31 May 2022

References

  • Agegnehu G, Nelson PN, Bird MI. 2016. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil Till Res. 160:1–13. doi:10.1016/j.still.2016.02.003.
  • Akhtar M, Sarwar N, Ashraf A, Ejaz A, Ali S, Rizwan M. 2020. Beneficial role of Azolla sp. in paddy soils and their use as bioremediators in polluted aqueous environments: implications and future perspectives. Arch Agron Soil Sci. 67:1242–1255. doi:10.1080/03650340.2020.1786885.
  • Alexander M. 1961. Introduction to soil microbiology. New York and London: John Willey and Sons.
  • Anantha KC, Majumder SP, Badole S, Padhan D, Datta A, Mandal B, Sreenivas CH. 2020. Pools of organic carbon in soils under a long-term rice–rice system with different organic amendments in hot, sub-humid India. Carbon Manag. 11:331–339. doi:10.1080/17583004.2020.1783624.
  • Benbi DK, Sharma S, Toor AS, Brar K, Sodhi GPS, Garg AK. 2018. Differences in soil organic carbon pools and biological activity between organic and conventionally managed rice-wheat fields. Org Agric. 8:1–14. doi:10.1007/s13165-016-0168-0.
  • Benefield CB, Howard PJA, Howard DM. 1977. The estimation of dehydrogenase activity in soil. Soil Biol Biochem. 9:67–70. doi:10.1016/0038-0717(77)90063-3.
  • Bhatt MK, Raverkar KP, Chandra R, Pareek N, Labanya R, Kumar V, Kaushik S, Singh DK. 2020. Effect of long-term balanced and imbalanced inorganic fertilizer and FYM application on chemical fraction of DTPA-extractable micronutrients and yields under rice–wheat cropping system in Mollisols. Soil Use Manage. 36:261–273. doi:10.1111/sum.12560.
  • Bhattacharyya T, Pal DK, Mandal C, Velayutham M. 2000. Organic carbon stock in Indian soils and their geographical distribution. Curr Sci. 70:655–660.
  • Billah M, Khan M, Bano A, Hassan TU, Munir A, Gurmani AR. 2019. Phosphorus and phosphate solubilizing bacteria: keys for sustainable agriculture. Geomicrobiol J. 36:904–916. doi:10.1080/01490451.2019.1654043.
  • Biswas PP, Sharma PD. 2008. A new approach for estimating fertiliser response ratio-the Indian scenario. Indian J Fert. 4:59.
  • Biswas DR, Narayanasamy G, Datta SC, Singh G, Begum M, Maiti D, Basak BB. 2009. Changes in nutrient status during preparation of enriched organomineral fertilizers using rice straw, low‐grade rock phosphate, waste mica, and phosphate solubilizing microorganism. Commun Soil Sci Plant Anal. 40:2285–2307. doi:10.1080/00103620902961243.
  • Blair GJ, Lefroy RD, Lisle L. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res. 46:459–1466. doi:10.1071/AR9951459.
  • Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39–46. doi:10.1097/00010694-194501000-00006.
  • Buragohain S, Sarma B, Nath DJ, Gogoi N, Meena RS, Lal R. 2018. Effect of 10 years of biofertiliser use on soil quality and rice yield on an Inceptisol in Assam, India. Soil Res. 56:49–58. doi:10.1071/SR17001.
  • Chen Y, Camps-Arbestain M, Shen Q, Singh B, Cayuela ML. 2018. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr Cycl Agroecosyst. 111:103–125. doi:10.1007/s10705-017-9903-5.
  • Chen W, Teng CY, Qian C, Yu HQ. 2019. Characterizing properties and environmental behaviors of dissolved organic matter using two-dimensional correlation spectroscopic analysis. Environ Sci Technol. 53:4683–4694. doi:10.1021/acs.est.9b01103.
  • Das A, Patel DP, Kumar M, Ramkrushna GI, Mukherjee A, Layek J, Ngachan SV, Buragohain J. 2017. Impact of seven years of organic farming on soil and produce quality and crop yields in eastern Himalayas, India. Agric Ecosyst Environ. 236:142–153. doi:10.1016/j.agee.2016.09.007.
  • Dębska B, Długosz J, Piotrowska-Długosz A, Banach-Szott M. 2016. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—results from a field-scale study. J Soils Sediments. 16:2335–2343. doi:10.1007/s11368-016-1430-5.
  • Dick RP. 2011. Methods of soil enzymology.Soil. Madison: Science Society of America.
  • Dotaniya ML, Aparna K, Dotaniya CK, Singh M, Regar KL. 2019. Role of soil enzymes in sustainable crop production. In: Kuddus M, editor. Enzymes in Food Biotechnology. Cambridge (Massachusetts, U.S.A): Academic Press; p. 569–589.
  • Dutta A, Trivedi A, Nath CP, Gupta DS, Hazra KK. 2022. A comprehensive review on grain legumes as climate-smart crops: challenges and prospects. Environ Chall. 7:100479. doi:10.1016/j.envc.2022.100479.
  • El-Sawah AM, El-Keblawy A, Ali DFI, Ibrahim HM, El-Sheikh MA, Sharma A, Hamoud YA, Shaghaleh H, Brestic M, Skalicky M, et al. 2021. Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture. 11:194. doi:10.3390/agriculture11030194.
  • FAO. 2017a. The state of food security and nutrition in the world 2017. In: Building resilience for peace and food security. Rome: FAO 1–27 .
  • FAO. 2017b. The FAO Rice Market Monitor (RMM) provides an analysis of the most recent developments in the global rice market, including a short-term outlook. Rome:FAO.
  • Gaind S, Singh YV. 2016. Short‐term impact of organic fertilization and seasonal variations on enzymes and microbial indices under rice–wheat rotation. Clean. 44:1396–1404. doi:10.1002/clen.201500946.
  • Garai TK, Datta JK, Mondal NK. 2014. Evaluation of integrated nutrient management on boro rice in alluvial soil and its impacts upon growth, yield attributes, yield and soil nutrient status. Arch Agron Soil Sci. 60:1–14. doi:10.1080/03650340.2013.766721.
  • Ghosh A, Bhattacharyya R, Meena MC, Dwivedi BS, Singh G, Agnihotri R, Sharma C. 2018. Long-term fertilization effects on soil organic carbon sequestration in an Inceptisol. Soil Till Res. 177:134–144. doi:10.1016/j.still.2017.12.006.
  • Ghosh A, Bhattacharyya R, Agarwal BK, Mahapatra P, Shahi DK, Singh G, Agnihorti R, Sawlani R, Sharma C. 2019. Long‐term fertilization effects on 13C natural abundance, soil aggregation, and deep soil organic carbon sequestration in an Alfisol. Land Degrad Develop. 30:391–405. doi:10.1002/ldr.3229.
  • Hamoud YA, Shaghaleh H, Sheteiwy M, Guo X, Elshaikh NA, Khan NU, Oumarou A, Rahim SF. 2019. Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency. Agric Water Manag. 223:105706. doi:10.1016/j.agwat.2019.105706.
  • Haque MM, Datta J, Ahmed T, Ehsanullah M, Karim MN, Akter M, Iqbal MA, Baazeem A, Hadifa A, Ahmed S, et al. 2021. Organic amendments boost soil fertility and rice productivity and reduce methane emissions from paddy fields under sub-tropical conditions. Sustainability. 13:3103. doi:10.3390/su13063103.
  • Holík L, Hlisnikovský L, Honzík R, Trögl J, Burdová H, Popelka J. 2019. Soil microbial communities and enzyme activities after long-term application of inorganic and organic fertilizers at different depths of the soil profile. Sustainability. 11:3251. doi:10.3390/su11123251.
  • IFOAM. 2016. Annual report of international federation of organic agriculture management. Retrieved from: https://www.ifoam.bio/about-us/annual-reports
  • Institute Inc SAS. 2013. SAS/STAT user’s Guide. Cary:SAS Institute Inc.
  • Jackson ML. 1973. Methods of chemical analysis. New Delhi: Prentice Hall of India (Pvt.) Ltd.
  • Jackson O, Quilliam RS, Stott A, Grant H, Subke JA. 2019. Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates. Plant Soil. 440:473–490. doi:10.1007/s11104-019-04072-3.
  • Jansson JK, Hofmockel KS. 2019. Soil microbiomes and climate change. Nat Rev Microbiol. 18:35–46. doi:10.1038/s41579-019-0265-7.
  • Jat HS, Datta A, Choudhary M, Sharma PC, Jat ML. 2020. Conservation agriculture: factors and drivers of adoption and scalable innovative practices in Indo-Gangetic Plains of India–a review. Int J Sustain Agric Res. 19:40–55. doi:10.1080/14735903.2020.1817655.
  • Jenkinson DS, Powlson DS. 1976. The effects of biocidal treatments on metabolism in soil—V: a method for measuring soil biomass. Soil Biol Biochem. 8:209–213. doi:10.1016/0038-0717(76)90005-5.
  • Khaliq A, Zafar M, Abbasi MK, Hussain I. 2018. Soil-plant micronutrients dynamics in response to integrated fertilization under wheat–soybean cropping system at Rawalakot, Pakistan. Arch Agron Soil Sci. 64:640–653. doi:10.1080/03650340.2017.1376245.
  • Knudsen D, Peterson GA, Pratt PF. 1982. Lithium, sodium, and potassium. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analyses, Part 2, Chemical and Microbiological Properties. Madison (Wisconsin, U.S.A): American Society of Agronomy, Soil Science Society of America; p. 225–246.
  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT. 2017. Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. J Plant Growth Regul. 36:608–617. doi:10.1007/s00344-016-9663-5.
  • Kumar M, Singh SK, Patra A. 2021. Effect of different nutrient sources on yield and biochemical properties of soil under rice–wheat cropping sequence in middle Gangetic alluvial plain. J Plant Nutr. 1–21. doi:10.1080/01904167.2021.1899206.
  • Li Y, Fang F, Wei J, Wu X, Cui R, Li G, Zheng F, Tan D. 2019a. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-Year experiment. Sci Rep. 9:1–9. doi:10.1038/s41598-019-48620-4.
  • Li ZB, Lu X, Teng HH, Chen Y, Zhao L, Ji J, Chen J, Liu L. 2019b. Specificity of low molecular weight organic acids on the release of elements from lizardite during fungal weathering. Geochim Cosmochim Acta. 256:20–34. doi:10.1016/j.gca.2018.09.029.
  • Lin Y, Ye G, Kuzyakov Y, Liu D, Fan J, Ding W. 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol Biochem. 134:187–196. doi:10.1016/j.soilbio.2019.03.030.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J. 42:421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Maclean JC, Dawe DC, Hardy B, Hettal GP. 2002. Rice almanac. 3rdedition ed. Oxon: CABI publishing Wallingford.
  • Mandal M, Kamp P, Singh M. 2020. Effect of long term manuring on carbon sequestration potential and dynamics of soil organic carbon labile pool under tropical rice-rice agro-ecosystem. Commun Soil Sci Plant Anal. 51:468–480. doi:10.1080/00103624.2020.1718690.
  • Meetei TT, Kundu MC, Devi YB. 2020. Long-term effect of rice-based cropping systems on pools of soil organic carbon in farmer’s field in hilly agroecosystem of Manipur, India. Environ Monit Assess. 192:1–7. doi:10.1007/s10661-020-8165-x.
  • Mohanty S, Nayak AK, Kumar A, Tripathi R, Shahid M, Bhattacharyya P, Raja R, Panda BB. 2013. Carbon and nitrogen mineralization kinetics in soil of rice–rice system under long term application of chemical fertilizers and farmyard manure. Eur J Soil Biol. 58:113–121. doi:10.1016/j.ejsobi.2013.07.004.
  • Moharana PC, Meena MD, Biswas DR. 2018. Role of phosphate-solubilizing microbes in the enhancement of fertilizer value of rock phosphate through composting technology Meena, VS (ed.). In: Role of rhizospheric microbes in soil. Singapore: Springer; p. 167–202.
  • Nottingham AT, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Salinas N, Meir P. 2015. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences. 12:6071–6083. doi:10.5194/bg-12-6071-2015.
  • Patra A, Sharma VK, Purakayastha TJ, Barman M, Kumar S, Chakraborty D, Chobhe KA, Nath DJ. 2017. Effect of integrated nutrient management in rice on nitrogen availability, L-asparaginase and L-glutaminase activity in acidic soil. Int J Curr Microbiol App Sci. 6:3777–3783. doi:10.20546/ijcmas.2017.609.466.
  • Patra A, Sharma VK, Purakayastha TJ, Barman M, Kumar SC, D CKA, Nath DJ. 2018. Long-term effect of integrated nutrient management on yield and nutrients uptake by rice (Oryza sativa) in acid soil. Indian J Agric Sci. 88:579–583.
  • Patra A, Sharma VK, Purakayastha TJ, Barman M, Kumar S, Chakraborty D, Chobhe KA, Nath DJ, Anil AS. 2020a. Effect of long term integrated nutrient management (INM) practices on soil nutrients availability and enzymatic activity under acidic Inceptisol of North-Eastern region of India. Commun Soil Sci Plant Anal. 51:1137–1149. doi:10.1080/00103624.2020.1751185.
  • Patra A, Sharma VK, Nath DJ, Purakayastha TJ, Barman M, Kumar S, Chobhe KA, Dutta A, Anil AS. 2020b. Impact of long term integrated nutrient management (INM) practice on aluminium dynamics and nutritional quality of rice under acidic Inceptisol. Arch Agron Soil Sci. 68:31–43. doi:10.1080/03650340.2020.1821372.
  • Patra A, Sharma VK, Nath DJ, Purakayastha TJ, Barman M, Kumar S, Chobhe KA, Anil AS, Chakraborty R. 2020c. Influence of long term INM practices on the distribution of aluminium fractions in acidic Inceptisol of North Eastern Himalaya range and their relationship with NPK content in rice (Oryza sativa). Indian J Agric Sci. 90:1988–1992.
  • Patra A, Sharma VK, Nath DJ, Ghosh A, Purakayastha TJ, Barman M, Kumar S, Chobhe KA, Anil AS, Rekwar RK. 2021. Impact of soil acidity influenced by long-term integrated use of enriched compost, biofertilizers, and fertilizer on soil microbial activity and biomass in rice under acidic soil. J Soil Sci Plant Nutr. 21:756–767. doi:10.1007/s42729-020-00398-5.
  • Patra A, Sharma VK, Nath DJ, Dutta A, Purakayastha TJ, Kumar S, Barman M, Chobhe KA, Nath CP, Kumawat C. 2022. Long-term impact of integrated nutrient management on sustainable yield index of rice and soil quality under acidic inceptisol. Arch Agron Soil Sci. 1–18. doi:10.1080/03650340.2022.2056597.
  • Paul R, Singh RD, Patra AK, Biswas DR, Bhattacharyya R, Arunkumar K. 2018. Phosphorus dynamics and solubilizing microorganisms in acid soils under different land uses of Lesser Himalayas of India. Agrofor Syst. 92:449–461. doi:10.1007/s10457-017-0168-4.
  • Ren F, Sun N, Xu M, Zhang X, Wu L, Xu M. 2019. Changes in soil microbial biomass with manure application in cropping systems: a meta-analysis. Soil Till Res. 194:104291. doi:10.1016/j.still.2019.06.008.
  • Roberts TL. 2014. Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng. 83:52–59. doi:10.1016/j.proeng.2014.09.012.
  • Saha S, Saha B, Seth T, Dasgupta S, Ray M, Pal B, Pati S, Mukhopadhyay SK, Hazra G. 2019. Micronutrients availability in soil–plant system in response to long-term integrated nutrient management under rice–wheat cropping system. J Plant Nutr Soil Sci. 19:712–724. doi:10.1007/s42729-019-00071-6.
  • Sannathimmappa HG, Gurumurthy BR, Jayadeva HM, Rajanna D, Shivanna MB. 2015. Effect of paddy straw based integrated nutrient management practices for sustainable production of rice. IOSR J Agric Vet Sci. 8:74–77.
  • Sheteiwy MS, Ali DFI, Xiong YC, Brestic M, Skalicky M, Hamoud YA, Ulhassan Z, Shaghaleh H, AbdElgawad H, Farooq M, et al. 2021a. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 21:1–21. doi:10.1186/s12870-021-02949-z.
  • Sheteiwy MS, AbdElgawad H, Xiong YC, Macovei A, Brestic M, Skalicky M, Hamoud YA, El‐Sawah AM. 2021b. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiol Plant. 172:2153–2169. doi:10.1111/ppl.13454.
  • Singh V, Patra A. 2017. Effect of FYM and manganese on yield and uptake of nutrients in wheat (Triticum aestivum). Annals Plant Soil Res. 19:381–384.
  • Snyder JD, Trofymow JA. 1984. A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Commun Soil Sci Plant Anal. 15:587–597. doi:10.1080/00103628409367499.
  • Somasundaram J, Chaudhary RS, Awanish Kumar D, Biswas AK, Sinha NK, Mohanty M, Chaudhari SK. 2018. Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate‐associated carbon in rainfed Vertisols. Eur J Soil Sci. 69:879–891. doi:10.1111/ejss.12692.
  • Subbiah BV, Asija GL. 1956. Rapid procedure for the estimation of the available nitrogen in soils. Curr Sci. 25:259–260.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1:301–307. doi:10.1016/0038-0717(69)90012-1.
  • Tandon HLS. 2001. Methods of Analysis of soils, plants, waters, and fertilizers. New Delhi (India): Fertilizer Development and Consultation Organization.
  • Trevors JT. 1984. Dehydrogenase activity in soil: a comparison between the INT and TTC assay. Soil Biol Biochem. 16:673–674. doi:10.1016/0038-0717(84)90090-7.
  • Walia MK, Walia SS, Dhaliwal SS. 2010. Long-term effect of integrated nutrient management of properties of Typic Ustochrept after 23 cycles of an irrigated rice (Oryza sativa L.)–wheat (Triticum aestivum L.) system. J Sustain Agr. 34:724–743. doi:10.1080/10440046.2010.507519.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37:29–38. doi:10.1097/00010694-193401000-00003.
  • Wang B, Liu GB, Xue S, Zhu B. 2011. Changes in soil physico-chemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau. Environ Earth Sci. 62:915–925. doi:10.1007/s12665-010-0577-4.
  • Wang L, Butterly CR, Tian W, Herath HM, Xi Y, Zhang J, Xiao X. 2016. Effects of fertilization practices on aluminum fractions and species in a wheat soil. J Soils Sediments. 16:1933–1943. doi:10.1007/s11368-016-1380-y.
  • Wei M, Hu G, Wang H, Bai E, Lou Y, Zhang A, Zhuge Y. 2017. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. Eur J Soil Biol. 82:27–34. doi:10.1016/j.ejsobi.2017.08.002.
  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhowmik SN, Datta M, Layak J, Saha P. 2019a. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol Indic. 105:303–315. doi:10.1016/j.ecolind.2017.08.071.
  • Yadav SK, Benbi DK, Toor AS. 2019b. Effect of long-term application of rice straw, farmyard manure and inorganic fertilizer on potassium dynamics in soil. Arch Agron Soil Sci. 65:374–384. doi:10.1080/03650340.2018.1505040.
  • Yang Y, Wang P, Zeng Z. 2019. Dynamics of bacterial communities in a 30-year fertilized paddy field under different organic–inorganic fertilization strategies. Agronomy. 9:14. doi:10.3390/agronomy9010014.
  • Ye G, Lin Y, Liu D, Chen Z, Luo J, Bolan N, Fan J, Ding W. 2019. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Appl Soil Ecol. 33:24–33. doi:10.1016/j.apsoil.2018.09.008.
  • Yu Q, Hu X, Ma J, Ye J, Sun W, Wang Q, Lin H. 2020. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil Till Res. 196:104483. doi:10.1016/j.still.2019.104483.
  • Zhang K, Chen L, Li Y, Brookes PC, Xu J, Luo Y. 2020. Interactive effects of soil pH and substrate quality on microbial utilization. Eur J Soil Biol. 96:103151. doi:10.1016/j.ejsobi.2020.103151.
  • Zhao Z, Zhang C, Li F, Gao S, Zhang J, Paz-Ferreiro J. 2020. Effect of compost and inorganic fertilizer on organic carbon and activities of carbon cycle enzymes in aggregates of an intensively cultivated Vertisol. Plos One. 15:e0229644. doi:10.1371/journal.pone.0229644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.