1,124
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Uptake, translocation, transformation and physiological effects of nanoparticles in plants

, &
Pages 1579-1599 | Received 14 Mar 2022, Accepted 15 Jul 2022, Published online: 24 Jul 2022

References

  • Abdel-Aziz HMM, Hasaneen MNA, Aya MO. 2018. Foliar application of nano chitosan NPK fertilizer improves the yield of wheat plants grown on two different soils. Egypt J Exp Biol (Bot). 14(1):63–72.
  • Ahmed B, Rizvi A, Ali K, Lee J, Zaidi A, Khan MS, Musarrat J. 2021. Nanoparticles in the soil–plant system: a review. Environ Chem Lett. 19(1):1–65. doi:10.1007/s10311-020-01129-z.
  • Alshaal T, El-Ramady H. 2017. Foliar application: from plant nutrition to biofortification. Environ Biodivers Soil Secur. 1:71–83.
  • Ananda S, Shobha G, Shashidhara KS, Mahadimane V. 2019. Nano-cuprous oxide enhances seed germination and seedling growth in Lycopersicum esculentum plants. J Drug Deliv Ther. 9(2):296–302. doi:10.22270/jddt.v9i2.2554.
  • Armin M, Sadegh A, Saaeid M. 2014. Effect of time and concentration of nano-Fe foliar application on yield and yield components of wheat. Int J Biosci. 4(9):69–75.
  • Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, and Levard C. 2017. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol. 51(15):8682–8691.
  • Avellan A, Yun J, Morais BP, Clement ET, Rodrigues SM, Lowry GV. 2021. Critical review: role of inorganic nanoparticle properties on their foliar uptake and in planta translocation. Environ Sci Technol. 55(20):13417–13431. doi:10.1021/acs.est.1c00178.
  • Bala R, Kalia A, Dhaliwal SS. 2019. Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. J Soil Sci Plant Nutr. 19(2):379–389. doi:10.1007/s42729-019-00040-z.
  • Banerjee K, Pramanik P, Maity A, Joshi DC, Wani SH, and Krishnan P. 2019. Methods of using nanomaterials to plant systems and their delivery to plants (Mode of entry, uptake, translocation, accumulation, biotransformation and barriers). Adv Phytonanotechnol. 123–152. doi:10.1016/B978-0-12-815322-2.00005-5
  • Barriere C, Piettre K, Latour V, Margeat O, Turrin CO, Chaudret B, Fau P. 2012. Ligand effects on the air stability of copper nanoparticles obtained from organometallic synthesis. J Mater Chem. 22(5):279–2285. doi:10.1039/C2JM14963J.
  • Beig B, Niazi MBK, Sher F, Jahan Z, Malik US, Khan MD, Américo-Pinheiro JHP, Vo DVN. 2022. Nanotechnology-based controlled release of sustainable fertilizers. A review. Environ Chem Lett. 1–18.
  • Bender RR, Haegele JW, Below FE. 2015. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron J. 107(2):563–573. doi:10.2134/agronj14.0435.
  • Bisht S, Sharma V, Kumari N. 2022. Biosynthesized magnetite nanoparticles from Polyalthia longifolia leaves improve photosynthetic performance and yield of Trigonella foenum-graecum under drought stress. Plant Stress. 5:100090. doi:10.1016/j.stress.2022.100090.
  • Cornu JY, Bussiere S, Coriou C, Robert T, Maucourt M, Deborde C, Moing A, Nguyen C. 2020. Changes in plant growth, Cd partitioning and xylem sap composition in two sunflower cultivars exposed to low Cd concentrations in hydroponics. Ecotoxicol Environ Saf. 205:111145. doi:10.1016/j.ecoenv.2020.111145.
  • Cui J, Liu T, Li F, Yi J, Liu C, Yu H. 2017. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut. 228:363–369. doi:10.1016/j.envpol.2017.05.014.
  • Cui J, Li Y, Jin Q, Li F. 2020. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environ Sci: Nano. 7(1):162–171.
  • da Cruz TN, Savassa SM, Montanha GS, Ishida JK, de Almeida E, Tsai SM, Lavres Junior J, Pereira de Carvalho HW. 2019. A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Sci Rep. 9(1):1–12. doi:10.1038/s41598-019-46796-3.
  • de la Rosa G, Vázquez-Núñez E, Molina-Guerrero C, Serafín-Muñoz AH, Vera-Reyes I. 2021. Interactions of nanomaterials and plants at the cellular level: current knowledge and relevant gaps. Nanotechnol Environ Eng. 6(1):1–19. doi:10.1007/s41204-020-00100-1.
  • De Schepper V, De Swaef T, Bauweraerts I, Steppe K. 2013. Phloem transport: a review of mechanisms and controls. J Exp Bot. 64(16):4839–4850. doi:10.1093/jxb/ert302.
  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ. 2013. Fate of CuO and ZnO nano and micro particles in the plant environment. Environ Sci Technol. 4(9):4734–4742. doi:10.1021/es304736y.
  • Eichert T, Kurtz A, Steiner U, Goldbach HE. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Physiol Plant. 134(1):151–160. doi:10.1111/j.1399-3054.2008.01135.x.
  • El-Metwally IM, Doaa MR, Abo-Basha AE-A, ME. 2018. Response of peanut plants to different foliar applications of nano- iron, manganese and zinc under sandy soil conditions. J Middle East Appl Sci. 8(2):474–482.
  • Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, Yu F. 2021a. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem. 161:122–130. doi:10.1016/j.plaphy.2021.02.002.
  • Faizan M, Sehar S, Rajput VD, Faraz A, Afzal S, Minkina T, Sushkova S, Adil MF, Yu F, Alatar AA, et al. 2021b. Modulation of cellular redox status and antioxidant defense system after synergistic application of zinc oxide nanoparticles and salicylic acid in rice (Oryza sativa) plant under arsenic stress. Plants. 10(11):2254. doi:10.3390/plants10112254.
  • Fan X, Cao X, Zhou H, Hao L, Dong W, He C, Xu M, Wu H, Wang L, Chang Z, et al. 2020. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.). Environ Exp Bot. 179:104203. doi:10.1016/j.envexpbot.2020.104203.
  • Fatemi H, Zaghdoud C, Nortes PA, Carvajal M, Martínez-Ballesta MD. 2020. Differential aquaporin response to distinct effects of two Zn concentrations after foliar application in pak choi (Brassica rapa L.) plants. Agronomy. 10(3):450. doi:10.3390/agronomy10030450.
  • Fernandez V, Bahamonde HA, Javier Peguero-Pina J, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T. 2017. Physico-chemical properties of plant cuticles and their functional and ecological significance. J Exp Bot. 68(19):5293–5306. doi:10.1093/jxb/erx302.
  • Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J. 2018. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci Total Environ. 631:1100–1108. doi:10.1016/j.scitotenv.2018.03.047.
  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD. 2018. Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ. 644:770–780. doi:10.1016/j.scitotenv.2018.06.356.
  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X. 2012. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 7(3):323–337. doi:10.3109/17435390.2012.658094.
  • Hasaneen MN, Abdel-aziz HM, Omer AM. 2016. Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem Biotechnol Res. 4(4):68–76.
  • Hasanuzzaman M, Alam MM, Nahar K, Ahamed KU, Fujita M. 2014. Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust J Crop Sci. 8(4):631–639.
  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL. 2013. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano. 7(2):1415–1423. doi:10.1021/nn305196q.
  • Holz M, Leue M, Ahmed MA, Benard P, Gerke HH, Carminati A. 2018. Spatial distribution of mucilage in the rhizosphere measured with infrared spectroscopy. Front Environ Sci. 6:87. doi:10.3389/fenvs.2018.00087.
  • Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, Zhao L, Gardea-Torresdeym JL. 2014. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol. 48(8):4376–4385. doi:10.1021/es404931g.
  • Hong J, Wang C, Wagner DC, Gardea-Torresdey JL, He F, Rico CM. 2021. Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environ Sci: Nano. 8(5):1196–1210.
  • Hu X, Li Y, Xu W, Chai Y. 2021. Effect of nano potassium fertilizer on cucumber amino acid component, volatile metabolite components and GLN family genes expression. Wirel Pers Commun. 15:1–25.
  • Huang Y, Zhao L, Keller AA. 2017. Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol. 51(17):9774–9783. doi:10.1021/acs.est.7b02523.
  • Hussain B, Lin Q, Hamid Y, Sanaullah M, Di L, Khan MB, He Z, Yang X. 2020. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci Total Environ. 712:136497. doi:10.1016/j.scitotenv.2020.136497.
  • Hussein MM, Abou-Baker NH. 2018. The contribution of nano zinc to alleviate salinity stress on cotton plants. R Soc Open Sci. 5(8):171809. doi:10.1098/rsos.171809.
  • Jalali M, Ghanati F, Modarres-Sanavi AM. 2016. Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop Pasture Sci. 67(6):621–628. doi:10.1071/CP15271.
  • Jurkow R, Pokluda R, Sękara A, Kalisz A. 2020. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biol. 20(1):1–12. doi:10.1186/s12870-020-02490-5.
  • Kim JW, Isobe T, Chang KH, Amano A, Maneja RH, Zamora PB, Siringan FP, Tanabe S. 2011. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ Pollut. 159(12):3653–3659. doi:10.1016/j.envpol.2011.07.020.
  • Kim KM, Kim HM, Lee WJ, Lee CW, Kim T, Lee JK, Jeong J, Paek SM, Oh JM. 2014. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica. Int J Nanomed. 9:29–40.
  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Arachchige DMB, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GAJ. 2017. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano. 11(2):1214–1221. doi:10.1021/acsnano.6b07781.
  • Kranjc E, Mazej D, Regvar M, Drobne D, Remškar M. 2018. Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environ Sci: Nano. 5(2):520–532.
  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, and Smalle JA. 2010. Uptake and distribution of ultrasmall Anatase TiO2 Alizarin red S Nanoconjugates in Arabidopsis thaliana. Nano Lett. 10(7):2296–2302. doi:10.1021/nl903518f.
  • Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carrière M. 2012. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health Part A. 75(13–15):722–734. doi:10.1080/15287394.2012.689800.
  • Li RW, Sun TL, Zhou SL, Ma YK, Shi QS, Xie XB, Huang XM. 2017. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int Biodeterior Biodegradation. 123:304–310. doi:10.1016/j.ibiod.2017.07.015.
  • Li M, Zhang P, Adeel M, Guo Z, Chetwynd AJ, Ma C, Bai T, Hao Y, Rui Y. 2021. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ Pollut. 269:116134. doi:10.1016/j.envpol.2020.116134.
  • Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W. 2020. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere. 239:124794. doi:10.1016/j.chemosphere.2019.124794.
  • Lv J, Christie P, Zhang S. 2019. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci: Nano. 6(1):41–59.
  • Ma Y, He X, Zhang P, Zhang Z, Ding Y, Zhang J, Wang XC, Luo W, Zhang J, Zheng L. 2017. Xylem and phloem-based transport of CeO2 nanoparticles in hydroponic cucumber plants. Environ Sci Technol. 51(9):5215–5221. doi:10.1021/acs.est.6b05998.
  • Ma X, Yan J. 2018. Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Curr Opin Environ Sci Health. 6:16–20. doi:10.1016/j.coesh.2018.07.008.
  • Moazzami Farida SH, Karamian R, Albrectsen BR. 2020. Silver nanoparticle pollutants activate oxidative stress responses and rosmarinic acid accumulation in sage. Physiol Plant. 170(3):415–432. doi:10.1111/ppl.13172.
  • Muller O, Cohu CM, Stewart JJ, Protheroe JA, Demmig‐Adams B, Adams IIIWW. 2014. Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes. Physiol Plant. 152(1):174–183. doi:10.1111/ppl.12155.
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek E, Somasundaran P, Klaessig F, Castranova V, Thompson M. 2009. Understanding biophysiochemical interactions at the nano–bio interface. Nat Mater. 8(7):543–557. doi:10.1038/nmat2442.
  • Ogunkunle CO, Odulaja DA, Akande FO, Varun M, Vishwakarma V, Fatoba PO. 2020. Cadmium toxicity in cowpea plant: effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J Biotechnol. 310:54–61. doi:10.1016/j.jbiotec.2020.01.009.
  • Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J. 2017. Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol. 51:4907–4917. doi:10.1021/acs.est.6b05882.
  • Perez-de-Luque A. 2017. Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci. 5:12. doi:10.3389/fenvs.2017.00012.
  • Pradhan S, Durgam M, Mailapalli DR. 2021. Urea loaded hydroxyapatite nanocarrier for efficient delivery of plant nutrients in rice. Arch Agron Soil Sci. 67(3):371–382. doi:10.1080/03650340.2020.1732940.
  • Rahale CS, Lakshmanan A, Sumithra MG, Kumar ER. 2021. Humic acid involved chelation of ZnO nanoparticles for enhancing mineral nutrition in plants. Solid State Commun. 333:114355. doi:10.1016/j.ssc.2021.114355.
  • Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K. 2018. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ. 645:1103–1113. doi:10.1016/j.scitotenv.2018.07.211.
  • Raliya R, Nair R, Chavalmane S, Wang WN, and Biswas P. 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) Plant. Metallomics. 7(12):1584–1594. doi:10.1039/C5MT00168D.
  • Rezaei M, Abbasi H. 2014. Foliar application of nano chelates, and nano chelate of zinc on plant resistance physiological processes in cotton (Gossipium hirsutum L.). Iran J Plant Physiol. 4(4):1137–1144.
  • Rizwan M, Ali S, Ur Rehman MZ, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chatha SAS, Imran M. 2019. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pollut. 248:358–367. doi:10.1016/j.envpol.2019.02.031.
  • Rossi L, Sharifan H, Zhang W, Schwab AP, Ma X. 2018. Mutual effects and in planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environ Sci: Nano. 5(1):150–157.
  • Saffan MM, Koriem MA, El-Henawy A, El-Mahdy S, El-Ramady H, Elbehiry F, Omara AED, Bayoumi Y, Badgar K, Prokisch J. 2022. Sustainable production of tomato plants (Solanum lycopersicum L.) under low-quality irrigation water as affected by bio-nanofertilizers of selenium and copper. Sustainability. 14(6):3236. doi:10.3390/su14063236.
  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants–Critical review. Nanotoxicology. 10(3):257–278. doi:10.3109/17435390.2015.1048326.
  • Schymura S, Fricke T, Hildebrand H, Franke K. 2017. Elucidating the role of dissolution in CeO2 nanoparticle plant uptake by smart radio labelling. Angew Chem Int Ed. 56(26):7411–7414. doi:10.1002/anie.201702421.
  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL. 2012. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol. 46(14):7637–7643. doi:10.1021/es300955b.
  • Servin AD, Pagano L, Castillo-Michel H, De la Torre-Roche R, Hawthorne J, Hernandez-Viezcas JA, Loredo-Portales R, Majumdar S, Gardea-Torresday J, Dhankher OP, et al. 2017. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology. 11(1):98–111. doi:10.1080/17435390.2016.1277274.
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater. 325:36–58. doi:10.1016/j.jhazmat.2016.11.063.
  • Shang H, Ma M, Liu F, Miao Z, Zhang A. 2019. Self-assembled reduced graphene oxide-TiO2 thin film for the enhanced photocatalytic reduction of Cr (VI) under simulated solar irradiation. J Nanosci Nanotechnol. 19(6):3376–3387. doi:10.1166/jnn.2019.16140.
  • Sharifi R, Mohammadi K, Rokhzadi A. 2016. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environ Exp Biol. 14(4):151–156. doi:10.22364/eeb.14.21.
  • Shi J, Ye J, Fang H, Zhang S, Xu C. 2018. Effects of copper oxide nanoparticles on paddy soil properties and components. Nanomaterials. 8(10):839. doi:10.3390/nano8100839.
  • Siddiqi KS, Husen A. 2017. Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett. 12(1):1–8. doi:10.1186/s11671-017-1861-y.
  • Singh A, Singh NB, Hussain I, Singh H, Singh SC. 2015. Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent. 4(8):25–40.
  • Slomberg DL, Schoenfisch MH. 2012. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol. 46(18):10247–10254. doi:10.1021/es300949f.
  • Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV. 2017. Impact of surface charge on cerium oxide nanoparticle uptake and translocation by wheat (Triticum aestivum). Environ Sci Technol. 51(13):7361–7368. doi:10.1021/acs.est.7b00813.
  • Spielman-Sun E, Lombi E, Donner E, Avellan A, Etschmann B, Howard D, Lowry GV. 2018. Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu (OH)2, and CuS nanoparticles. Environ Sci Technol. 52(17):9777–9784. doi:10.1021/acs.est.8b02111.
  • Sturikova H, Krystofova O, Huska D, Adam V. 2018. Zinc, zinc nanoparticles and plants. J Hazard Mater. 349(4):101–110. doi:10.1016/j.jhazmat.2018.01.040.
  • Su Y, Ashworth V, Kim C, Adeleye AS, Rolshausen P, Roper C, White J, Jassby D. 2019. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ Sci: Nano. 6(8):2311–2331.
  • Sun L, Song F, Zhu X, Liu S, Liu F, Wang Y, Li X. 2021. Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch Agron Soil Sci. 67(2):245–259. doi:10.1080/03650340.2020.1723003.
  • Syu YY, Hung JH, Chen JC, Chuang HW. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem. 83:57–64. doi:10.1016/j.plaphy.2014.07.010.
  • Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M. 2017. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett. 12(1):1–6. doi:10.1186/s11671-017-1839-9.
  • Taylor AF, Rylott EL, Anderson CW, Bruce NC. 2014. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLOS One. 9(4):e93793. doi:10.1371/journal.pone.0093793.
  • Thabet SG, Sallam A, Moursi YS, Karam MA, Alqudah AM, Wu H. 2021. Genetic factors controlling nTiO2 nanoparticles stress tolerance in barley (Hordeum vulgare) during seed germination and seedling development. Functional Plant Biol. 48(12):1288–1301. doi:10.1071/FP21129.
  • Tian L, Shen J, Sun G, Wang B, Ji R, Zhao L. 2020. Foliar application of SiO2 nanoparticles alters soil metabolite profiles and microbial community composition in the pakchoi (Brassica chinensis L.) rhizosphere grown in contaminated mine soil. Environ Sci Technol. 54(20):13137–13146. doi:10.1021/acs.est.0c03767.
  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK. 2016. Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci. 4:46. doi:10.3389/fenvs.2016.00046.
  • Ullah S, Adeel M, Zain M, Rizwan M, Irshad MK, Jilani G, Hameed A, Khan A, Arshad M, Raza A, et al. 2020. Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorus amended soil: a full life cycle study. J Environ Manag. 263:110365. doi:10.1016/j.jenvman.2020.110365.
  • Umar W, Hameed MK, Aziz T, Maqsood MA, Bilal HM, Rasheed N. 2021. Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Arch Agron Soil Sci. 67(9):1164–1176. doi:10.1080/03650340.2020.1782893.
  • Van Nhan L, Ma C, Rui Y, Cao W, Deng Y, Liu L, Xing B. 2016. The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Front Plant Sci. 6:1263. doi:10.3389/fpls.2015.01263.
  • Vankova R, Landa P, Podlipna R, Dobrev PI, Prerostova S, Langhansova L, Gaudinova A, Motkova K, Knirsch V, Vanek T. 2017. ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Sci Total Environ. 593:535–542. doi:10.1016/j.scitotenv.2017.03.160.
  • Vinkovic T, Novák O, Strnad M, Goessler W, Jurašin DD, Vrček PN IV. 2017. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res. 156:10–18. doi:10.1016/j.envres.2017.03.015.
  • Wang P, Lombi E, Sun SK, Scheckel KG, Malysheva A, McKenna BA, Menzies NW, Zhao FJ, Kopittke PM. 2017. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environ Sci: Nano. 4(2):448–460.
  • Wang Y, Liu Y, Zhan W, Zheng K, Lian M, Zhang C, Ruan X, Li T. 2020a. Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): a three-year field study. Ecotoxicol Environ Saf. 197:110600. doi:10.1016/j.ecoenv.2020.110600.
  • Wang Z, Li H, Li X, Xin C, Si J, Li S, Li Y, Zheng X, Li H, Wei X, et al. 2020b. Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat. Arch Agron Soil Sci. 66(9):1259–1273. doi:10.1080/03650340.2019.1663508.
  • Wang Y, Deng C, Cota-Ruiz K, Peralta-Videa JR, Hernandez-Viezcas JA, Gardea-Torresdey JL. 2021a. Soil-aged nano titanium dioxide effects on full-grown carrot: dose and surface-coating dependent improvements on growth and nutrient quality. Sci Total Environ. 774:145699. doi:10.1016/j.scitotenv.2021.145699.
  • Wang X, Jiang J, Dou F, Sun W, Ma X. 2021b. Simultaneous mitigation of arsenic and cadmium accumulation in rice (Oryza sativa L.) seedlings by silicon oxide nanoparticles under different water management schemes. Paddy Water Environ. 19(4):569–584. doi:10.1007/s10333-021-00855-6.
  • Wise JC, VanWoerkom AH, Acimovic SG, Sundin GW, Cregg BM, Vandervoort C. 2014. Trunk injection: a discriminating delivering system for horticulture crop IPM. Entomol Ornithol Herpetol. 3(2):1.
  • Wu P, Cui P, Du H, Alves ME, Zhou D, Wang Y. 2021. Long-term dissolution and transformation of ZnO in soils: the roles of soil pH and ZnO particle size. J Hazard Mater. 415:125604. doi:10.1016/j.jhazmat.2021.125604.
  • Xie C, Ma Y, Yang J, Zhang B, Luo W, Feng S, Zhang J, Wang G, He X, Zhang Z. 2019. Effects of foliar applications of ceria nanoparticles and CeCl3 on common bean (Phaseolus vulgaris). Environ Pollut. 250:530–536. doi:10.1016/j.envpol.2019.04.042.
  • Xie C, Yang C. 2020. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput Electron Agric. 178:105731. doi:10.1016/j.compag.2020.105731.
  • Xiong T, Zhang T, Xian Y, Kang Z, Zhang S, Dumat C, Shahid M, Li S. 2021. Foliar uptake, biotransformation, and impact of CuO nanoparticles in Lactuca sativa L. var. ramosa Hort. Environ Geochem Health. 43(1):423–439. doi:10.1007/s10653-020-00734-9.
  • Yang J, Cao W, Ruia Y. 2017. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact. 12(1):158–169. doi:10.1080/17429145.2017.1310944.
  • Yassen A, Abdallah E, Gabalah M, Zaghloul. 2017. Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (CuCumis sativus L.). Int J Agric Res. 12(3):130–135. doi:10.3923/ijar.2017.130.135.
  • Zahedi SM, Moharrami F, Sarikhani S, Padervand M. 2020. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Sci Rep. 10(1):1–8. doi:10.1038/s41598-020-74273-9.
  • Zahra Z, Waseem N, Zahra R, Lee H, Badshah MA, Mehmood A, Choi HK, Arshad M. 2017. Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agricult Food Chem. 65(28):5598–5606. doi:10.1021/acs.jafc.7b01843.
  • Zhai GS, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL. 2014. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett. 1(2):146–151. doi:10.1021/ez400202b.
  • Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ, Ding YY, Zhao YL, Chai ZF. 2012. Comparative toxicity of nanoparticulate/bulk Yb 2 O 3 and YbCl 3 to cucumber (Cucumis sativus). Environ Sci Technol. 46(3):1834–1841. doi:10.1021/es2027295.
  • Zhang P, Guo Z, Zhang Z, Fu H, White JC, Lynch I. 2020. Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small. 16(21):2000705. doi:10.1002/smll.202000705.
  • Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL. 2012a. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater. 225:131–138. doi:10.1016/j.jhazmat.2012.05.008.
  • Zhao LJ, Peng B, Hernandez-Viezcas JA, Rico C, Sun YP, Peralta-Videa JR, Tang XL, Niu GH, Jin LX, Varela-Ramirez A, et al. 2012b. Stress response and tolerance of zea mays to CeO 2 nanoparticles: cross talk among H 2 O 2, heat shock protein, and lipid peroxidation. ACS Nano. 6(11):9615–9622. doi:10.1021/nn302975u.
  • Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA. 2016. Metabolomics to detect response of lettuce (Lactuca sativa) to Cu (OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environ Sci Technol. 50(17):9697–9707. doi:10.1021/acs.est.6b02763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.