295
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preceding crops changed greenhouse gases emission and carbon neutrality under maize-rice and double rice cropping systems

, , , , &
Pages 1801-1816 | Received 10 Feb 2022, Accepted 19 Aug 2022, Published online: 29 Aug 2022

References

  • Abao JEB, Bronson KF, Wassmann R, Singh U. 2000. Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions. Nutr Cycl Agroecosyst. 58(1/3):131–139. doi:10.1023/A:1009842502608.
  • Bai J, Li Y, Zhang J, Xu F, Yue S, Wang Z, Li Z, Li S, Shen Y, Yue S. 2021. Straw returning and one-time application of a mixture of controlled release and solid granular urea to reduce carbon footprint of plastic film mulching spring maize. J Clean Prod. 280:124478. doi:10.1016/j.jclepro.2020.124478.
  • Breidenbach B, Blaser MB, Klose M, Conrad R. 2016. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community. Environ Microbiol. 18(9):2868–2885. doi:10.1111/1462-2920.13041.
  • Brentrup F, Küsters J, Kuhlmann H, Lammel J. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: i. Theoretical concept of a LCA method tailored to crop production. Eur J Agron. 20(3):247–264. doi:10.1016/S1161-0301(03)00024-8.
  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls. Phil Trans R Soc B. 368(1621):20130122. doi:10.1098/rstb.2013.0122.
  • Chen ZX, Wei YQ, Zhang ZY, Wang GA, Li J. 2022. Organic carbon sequestration in Chinese croplands under compost application and its contribution to carbon neutrality. Environ Sci Pollut Res. doi:10.1007/s11356-022-21254-2
  • Chen J, Xuan J, Du C, Xie J. 1997. Effect of potassium nutrition of rice on rhizosphere redox status. Plant Soil. 188(1):131–137. doi:10.1023/A:1004264411323.
  • Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food. 2(3):198–209. doi:10.1038/s43016-021-00225-9.
  • Davidson EA, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol. 4(2):217–227. doi:10.1046/j.1365-2486.1998.00128.x.
  • Don A, Schumacher J, Scherer-Lorenzen M, Scholten T, Schulze ED. 2007. Spatial and vertical variation of soil carbon at two grassland sites-implications for measuring soil carbon stocks. Geoderma. 141(3):272–282. doi:10.1016/j.geoderma.2007.06.003.
  • FAO. 2021. FAO statistical databases. http://faostat.fao.org. Accessed 6 June 2022.
  • Follett RF. 2001. Soil management concepts and carbon sequestration in cropland soils. Soil Till Res. 61(1):77–92. doi:10.1016/S0167-1987(01)00180-5.
  • Guo J, Song Z, Zhu Y, Wei W, Li S, Yu Y. 2017. The characteristics of yield-scaled methane emission from paddy field in recent 35-year in China: a meta-analysis. J Clean Prod. 161:1044–1050. doi:10.1016/j.jclepro.2017.06.073.
  • Huang K, Xia J, Wang Y, Ahlström A, Chen JQ, Cook RB, Cui EQ, Fang YY, Fisher JB, Huntzinger DN, et al. 2018. Enhanced peak growth of global vegetation and its key mechanisms. Nat Ecol Evol. 2(12):1897–1905. doi:10.1038/s41559-018-0714-0.
  • Huang Y, Zhang W, Sun WJ, Zheng XH. 2007. Net primary production of Chinese croplands from 1950 to 1999. Ecol Appl. 17(3):692–701. doi:10.1890/05-1792.
  • IPCC. 2013. Summary for policymakers. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.
  • Janz B, Weller S, Kraus D, Racela HS, Wassmann R, Butterbach-Bahl K, Kiese R. 2019. Greenhouse gas footprint of diversifying rice cropping systems: impacts of water regime and organic amendments. Agric Ecosyst Environ. 270:41–54. doi:10.1016/j.agee.2018.10.011.
  • Jia J, Ma Y, Xiong Q. 2012. Net ecosystem carbon budget, net global warming potential and greenhouse gas intensity in intensive vegetable ecosystems in China. Agric Ecosyst Environ. 150:27–37. doi:10.1016/j.agee.2012.01.011.
  • Jiang Z, Lin J, Liu Y, Mo C, Yang J. 2020. Double paddy rice conversion to maize-paddy rice reduces carbon footprint and enhances net carbon sink. J Clean Prod. 258:120643. doi:10.1016/j.jclepro.2020.120643.
  • Jones DL, Nguyen C, Finlay RD. 2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil. 321(1–2):5–33. doi:10.1007/s11104-009-9925-0.
  • Khalil MAK, Shearer MJ, Rasmussen RA, Xu L, Liu JL. 2008. Methane and nitrous oxide emissions from subtropical rice agriculture in China. J Geophys Res. 113(G3 Article G00A05).
  • Kimura M, Murase J, Lu YH. 2004. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem. 36(9):1399–1416. doi:10.1016/j.soilbio.2004.03.006.
  • Lal R. 2004. Carbon emissions from farm operations. Environ Int. 30(7):981–990. doi:10.1016/j.envint.2004.03.005.
  • Li B, Fan CH, Zhang H, Chen ZZ, Sun LY, Xiong ZQ. 2015a. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos Environ. 100:10–19. doi:10.1016/j.atmosenv.2014.10.034.
  • Li N, Li YM, Mu HL, Zhang PP, Jiang YQ. 2020. Convergence of China’s agricultural greenhouse gases. Appl Ecol Env Res. 18(1):609–624. doi:10.15666/aeer/1801_609624.
  • Li S, Tian S, Yuan G, Ge J, Xu Y, Wang M, Cao C, Zhai Z, Ling X, Zhan M, et al. 2015b. Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze river. Acta Agronomica Sinica. 41(10):1537. In Chinese. doi:10.3724/SP.J.1006.2015.01537.
  • Li C, Zhang Z, Guo L, Cai M, Cao C. 2013. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos Environ. 80:438–444. doi:10.1016/j.atmosenv.2013.08.027.
  • Liang XQ, Li H, Wang SX, Ye YS, Ji YJ, Tian GM, van Kessel C, Linquist BA. 2013. Nitrogen management to reduce yield-scaled global warming potential in rice. Field Crop Res. 146:66–74. doi:10.1016/j.fcr.2013.03.002.
  • Liu C, Yao Z, Wang K, Zheng X, Li B. 2019. Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Sci Total Environ. 647:895–904. doi:10.1016/j.scitotenv.2018.08.048.
  • Liu Y, Zhou Z, Zhang X, Xu X, Chen H, Xiong Z. 2015. Net global warming potential and greenhouse gas intensity from the double rice system with integrated oil–crop system management: a three-year field study. Atmos Environ. 116:92–101. doi:10.1016/j.atmosenv.2015.06.018.
  • Ma YC, Kong XW, Yang B, Zhang XL, Yan XY, Yang JC, Xiong ZQ. 2013. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management. Agric Ecosyst Environ. 164:209–219. doi:10.1016/j.agee.2012.11.003.
  • Masuda K. 2019. Eco-efficiency assessment of intensive rice production in Japan: joint application of life cycle assessment and data envelopment analysis. Sustainability. 11(19):5368. doi:10.3390/su11195368.
  • Mogensen L, Kristensen T, Nguyen TLT, Knudsen MT, Hermansen JE. 2014. Method for calculating carbon footprint of cattle feeds—Including contribution from soil carbon changes and use of cattle manure. J Clean Prod. 73:40–51. doi:10.1016/j.jclepro.2014.02.023.
  • Pan G, Li L, Wu L, Zhang X. 2004. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob Change Biol. 10(1):79–92. doi:10.1111/j.1365-2486.2003.00717.x.
  • Piao SL, Yue C, Ding JZ, Guo ZG. 2022. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci China Earth Sci. 65(6):1178–1186. doi:10.1007/s11430-022-9926-6.
  • Shang Z, Abdalla M, Xia L, Zhou F, Sun W, Smith P. 2021. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob Chang Biol. 27(19):4657–4670. doi:10.1111/gcb.15796.
  • Shang Q, Yang X, Gao C, Wu P, Liu J, Xu Y, Shen Q, Zou J, Guo S. 2011. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob Change Biol. 17(6):2196–2210. doi:10.1111/j.1365-2486.2010.02374.x.
  • Smith P, Lanigan G, Kutsch WL, Buchmann N, Eugster W, Aubinet M, Ceschia E, Beziat P, Yeluripati JB, Osborne B, et al. 2010. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric Ecosyst Environ. 139(3):302–315. doi:10.1016/j.agee.2010.04.004.
  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, et al. 2008. Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci. 363(1492):789–813. doi:10.1098/rstb.2007.2184.
  • Sun M, Zhan M, Zhao M, Tang LL, Qin MG, Cao CG, Cai ML, Jiang Y, Liu ZH. 2019. Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crop Res. 243: 107620 .
  • Tariq A, Jensen LS, Sander BO, De Tourdonnet S, Ambus P, Thanh PH, Van Trinh M, De Neergaard A. 2018. Paddy soil drainage influences residue carbon contribution to methane emissions. J Environ Manage. 225:168–176. doi:10.1016/j.jenvman.2018.07.080.
  • Timsina J, Jat ML, Majumdar K. 2010. Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant Soil. 335(1–2):65–82. doi:10.1007/s11104-010-0418-y.
  • Van Bodegom PM, Leffelaar PA, Stams AJM, Wassmann R. 2000. Modeling methane emissions from rice fields: variability, uncertainty, and sensitivity analysis of processes involved. Nutr Cycl Agroecosys. 58(1):231–248. doi:10.1023/A:1009854905333.
  • Wang J, Zhang X, Xiong Z, Khalil MAK, Zhao X, Xie Y, Xing G. 2012. Methane emissions from a rice agroecosystem in South China: effects of water regime, straw incorporation and nitrogen fertilizer. Nutrient Cycling in Agroecosystems. 93(1):103–112. doi:10.1007/s10705-012-9503-3.
  • Wassmann R, Buendia LV, Lantin RS, Bueno CS, Lubigan LA, Umali A, Nocon NN, Javellana AM, Neue HU. 2000. Mechanisms of crop management impact on methane emissions from rice fields in Los Banos Philippines. Nutr Cycl Agroecosyst. 58(1):107–119. doi:10.1023/A:1009838401699.
  • Weller S, Janz B, Jörg L, Kraus D, Racela HSU, Wassmann R, Butterbach-Bahl K, Kiese R. 2016. Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Glob Change Biol. 22(1):432–448. doi:10.1111/gcb.13099.
  • Weller S, Kraus D, Ayag KRP, Wassmann R, Alberto MCR, Butterbach-Bahl K, Kiese R. 2015. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr Cycl Agroecosyst. 101(1):37–53. doi:10.1007/s10705-014-9658-1.
  • Wu L, Wu X, Lin S, Wu Y, Tang S, Zhou M, Shaaban M, Zhao J, Hu R, Kuzyakov Y, et al. 2018. Carbon budget and greenhouse gas balance during the initial years after rice paddy conversion to vegetable cultivation. Sci Total Environ. 627:46–56. doi:10.1016/j.scitotenv.2018.01.207.
  • Xia L, Lam SK, Wolf B, Kiese R, Chen D, Butterbach-Bahl K. 2018. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems running. Glob Change Biol. 24(12):5919–5932. doi:10.1111/gcb.14466.
  • Xu W, Wan S. 2008. Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China. Soil Biol Biochem. 40(3):679–687. doi:10.1016/j.soilbio.2007.10.003.
  • Yan M, Cheng K, Luo T, Yan Y, Pan G, Rees RM. 2015. Carbon footprint of grain crop production in China - based on farm survey data. J Clean Prod. 104:130–138. doi:10.1016/j.jclepro.2015.05.058.
  • Yue Q, Xu XR, Hillier J, Cheng K, Pan GX. 2017. Mitigating greenhouse gas emissions in agriculture: from farm production to food consumption. J Clean Prod. 149:1011–1019. doi:10.1016/j.jclepro.2017.02.172.
  • Zhang Z, Guo L, Liu T, Li C, Cao C. 2015. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice wheat cropping systems in central China. Atmos Environ. 122:636–644. doi:10.1016/j.atmosenv.2015.09.065.
  • Zhang D, Shen J, Zhang F, Li Y, Zhang W. 2017. Carbon footprint of grain production in China. Sci Rep. 7(1):4126. doi:10.1038/s41598-017-04182-x.
  • Zhang L, Yu D, Shi X, Weindorf DC, Zhao L, Ding W, Wang H, Pan J, Li C. 2009. Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region,China by coupling 1:50,000 soil data base with DNDC model. Atmos Environ. 43(17):2737–2746. doi:10.1016/j.atmosenv.2009.02.051.
  • Zheng X, Wang M, Wang Y, Shen R, Gou J, Li J, Jin J, Li L. 2000. Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere – Glob Change Sci. 2(2):207–224. doi:10.1016/S1465-9972(99)00056-2.
  • Zheng X, Wang M, Wang Y, Shen R, Li J, Heyer J, Kogge M, Laotu L, Jisheng J. 1998. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields. Adv Atmos Sci. 15(4):569–579. doi:10.1007/s00376-998-0033-5.
  • Zou J, Huang Y, Jiang J, Zheng X, Sass RL. 2005. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Glob Biogeochem Cycles. 19(2):1–9. doi:10.1029/2004GB002401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.