270
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of soil amendments to enhance soil carbon and biological properties in a paddy field under elevated CO2 conditions

ORCID Icon & ORCID Icon
Pages 1860-1877 | Received 11 Jan 2022, Accepted 28 Aug 2022, Published online: 16 Sep 2022

References

  • Aguilera S SM, Borie BG, Peirano VP, Galindo GG. 1997. Organic matter in volcanic soils in Chile: chemical and biochemical characterization. Commun Soil Sci Plant Anal. 28(11–12):899–912. doi:10.1080/00103629709369841.
  • Alef K, Nannipieri P. 1995. Methods in applied soil microbiology and biochemistry. (No. 631.46 M592ma): Academic Press.
  • Anderson TH, Domsch KH. 1986. Carbon assimilation and microbial activity in soil. J Plant Nutr Soil Sci. 149(4):457–468. doi:10.1002/jpln.19861490409.
  • Anderson TH, Domsch KH. 2010. Soil microbial biomass: the eco-physiological approach. Soil Biol Biochem. 42(12):2039–2043. doi:10.1016/j.soilbio.2010.06.026.
  • Arndal MF, Merrild MP, Michelsen A, Schmidt IK, Mikkelsen TN, Beier C. 2013. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant Soil. 369(1):615–629. doi:10.1007/s11104-013-1601-8.
  • Bai X, Guo Z, Huang Y, An S. 2020. Root cellulose drives soil fulvic acid carbon sequestration in the grassland restoration process. Catena. 191:104575. doi:10.1016/j.catena.2020.104575
  • Bhattacharyya P, Roy KS, Das M, Ray S, Balachandar D, Karthikeyan S, Nayak AK, Mohapatra T. 2016. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach. Sci Total Environ. 542:886–898. doi:10.1016/j.scitotenv.2015.10.154
  • Bhattacharyya P, Roy KS, Neogi S, Manna M, Adhya T, Rao KS, Nayak AK. 2013. Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice. Environ Monit Assess. 185(10):8659–8671. doi:10.1007/s10661-013-3202-7.
  • Blair G, Lefroy R, Lisle L. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res. 46(7):1459–1466. doi:10.1071/AR9951459.
  • Casida LEJ, Klein DA, Santoro T. 1964. Soil dehydrogenase activity. Soil Sci. 98(6):371–376. doi:10.1097/00010694-196412000-00004.
  • Cheng L, Leavitt SW, Kimball BA, Pinter PJ, Ottman MJ, Matthias A, Wall GW, Brooks T, Williams DG, Thompson TL, et al. 2007. Dynamics of labile and recalcitrant soil carbon pools in a sorghum free-air CO2 enrichment (FACE) agroecosystem. Soil Biol Biochem. 39(9):2250–2263. doi:10.1016/j.soilbio.2007.03.031.
  • Chen J, Sun X, Zheng J, Zhang X, Liu X, Bian R, Li, L, Cheng, K, Zheng, J, Pan, G. 2018. Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biol Fertil Soil. 54(2):175–188. doi:10.1007/s00374-017-1253-6.
  • Das S, Bhattacharyya P, Adhya TK. 2011. Interaction effects of elevated CO2 and temperature on microbial biomass and enzyme activities in tropical rice soils. Environ Monit Assess. 182(1):555–569. doi:10.1007/s10661-011-1897-x.
  • Drigo B, Kowalchuk GA, van Veen Ja, van Veen JA. 2008. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils. 44(5):667–679. doi:10.1007/s00374-008-0277-3.
  • Ebersberger D, Niklaus PA, Kandeler E. 2003. Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol Biochem. 35(7):965–972. doi:10.1016/S0038-0717(03)00156-1.
  • Eivazi F, Tabatabai MA. 1988. Glucosidases and galactosidases in soils. Soil Biol Biochem. 20(5):601–606. doi:10.1016/0038-0717(88)90141-1.
  • Enwall K, Nyberg K, Bertilsson S, Cederlund H, Stenström J, Hallin S. 2007. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biol Biochem. 39(1):106–115. doi:10.1016/j.soilbio.2006.06.015.
  • FAO, (2018) Rice market monitor, April 2018, Vol XXI, http://www.fao.org/http://www.fao.org/3/I9243EN/i9243en.pdf1
  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X. 2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem. 46:80–88. doi:10.1016/j.soilbio.2011.11.016
  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ. 206:46–59. doi:10.1016/j.agee.2015.03.015
  • Henry HAL. 2013. Reprint of “Soil extracellular enzyme dynamics in a changing climate”. Soil Biol Biochem. 56:53–59. doi:10.1016/j.soilbio.2012.10.022
  • Huang QH, Li DM, Liu KL, Yu XC, Ye HC, Hu HW, Zhang WJ, WANG S-L, ZHOU L-J, Duan Y-H. 2014. Effects of long-term organic amendments on soil organic carbon in a paddy field: a case study on red soil. Journal of Integrative Agriculture. 13(3):570–576. doi:10.1016/S2095-3119(13)60714-5.
  • Hu Z, Chen X, Yao J, Zhu C, Zhu J, Liu M. 2020. Plant-mediated effects of elevated CO2 and rice cultivars on soil carbon dynamics in a paddy soil. New Phytol. 225(6):2368–2379. doi:10.1111/nph.16298.
  • Hungate R. 1966. The Rumen and Its Microbes 1 (New York: Academic Press,). 9780123616500.
  • IPCC. 2007 Solomon, S, Qin, D, Manning, M, Chen, Z, Marquis, M, Averyt, K.B, Tignor, M, Miller, H.L. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 4., Cambridge, United Kingdom and New York, NY, USA: Cambridge university press. pp. 996.
  • Jackson M. 1967. Soil chemical analysis prentice hall of india private limited. New Delhi. 498:56–70.
  • Jenkinson DS, Powlson DS. 1976. The effects of biocidal treatments on metabolism in soil—I. Fumigation with Chloroform. Soil Biol Biochem. 8(3):167–177. doi:10.1016/0038-0717(76)90001-8.
  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D. 2006. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem. 38(8):2448–2460. doi:10.1016/j.soilbio.2006.02.021.
  • Kapetanović D, Dragun Z, Valić D, Teskeredžić Z, Teskeredžić E. 2009. Enumeration of heterotrophs in river water with spread plate method: comparison of yeast extract agar and R2A agar. Fresen Environ Bull. 18(7b):1276–1280.
  • Kennedy AC, Smith KL. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil. 170(1):75–86. doi:10.1007/BF02183056.
  • Kim HY, Lieffering A, Kobayashi K, Okada M, Miura S. 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Glob Change Biol. 9(6):826–837. doi:10.1046/j.1365-2486.2003.00641.x.
  • Kim J, Yoo G, Kim D, Ding W, Kang H. 2017. Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl Soil Ecol. 117:57–62. doi:10.1016/j.apsoil.2017.05.006
  • Kumar U, Nayak AK, Sahoo S, Kumar A, Kaviraj M, Shahid M. 2020. Combined effects of elevated CO2, N fertilizer and water deficit stress on diazotrophic community in sub-humid tropical paddy soil. Appl Soil Ecol. 155:103682. doi:10.1016/j.apsoil.2020.103682
  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R. 2016. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int. 87:1–12. doi:10.1016/j.envint.2015.10.018
  • Li T, Gao J, Bai L, Wang Y, Huang J, Kumar M, Zeng X. 2019. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil. Soil Tillage Res. 195:104428. doi:10.1016/j.still.2019.104428
  • Liu M, Hu F, Chen X, Huang Q, Jiao J, Zhang B, Li H. 2009. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Applied Soil Ecology. 42(2):166–175. doi:10.1016/j.apsoil.2009.03.006.
  • Liu D, Tago K, Hayatsu M, Tokida T, Sakai H, Nakamura H, Usui Y, Hasegawa T, Asakawa S. 2016. Effect of elevated CO2</sub> concentration, elevated temperature and no nitrogen fertilization on methanogenic archaeal and Methane-Oxidizing bacterial community structures in paddy soil. Microbe Environ. 31(3):349–356. doi:10.1264/jsme2.ME16066.
  • Li Y, Xu M, Sun OJ, Cui W. 2004. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biol Biochem. 36(12):2111–2114. doi:10.1016/j.soilbio.2004.06.003.
  • Li C, Zhu J, Zeng Q, Liu G. 2020. Changes in microelement availability in a paddy field exposed to long-term atmospheric CO2 enrichment. J Soils Sediment. 1–7. doi:10.1007/s11368-020-02601-7
  • Luo S, Wang S, Tian L, Li S, Li X, Shen Y, Tian C. 2017. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Applied Soil Ecology. 117:10–15. doi:10.1016/j.apsoil.2017.04.024
  • Okubo T, Liu D, Tsurumaru H, Ikeda S, Asakawa S, Tokida T, Tago K, Hayatsu M, Aoki N, Ishimaru K, et al. 2015. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria. Front Microbiol. 6(136). doi:10.3389/fmicb.2015.00136.
  • Okubo T, Tokida T, Ikeda S, Bao Z, Tago K, Hayatsu M, Nakamura H, Sakai H, Usui Y, Hayashi K, et al. 2014. Effects of Elevated Carbon Dioxide, Elevated Temperature, and Rice Growth Stage on the Community Structure of Rice Root—associated Bacteria. Microbe Environ Adv Pub. 29(2):184–190. doi:10.1264/jsme2.ME14011.
  • Oladele SO. 2019. Effect of biochar amendment on soil enzymatic activities, carboxylate secretions and upland rice performance in a sandy clay loam Alfisol of Southwest Nigeria. Sci Afr. 4:e00107. doi:10.1016/j.sciaf.2019.e00107
  • Olsen SR. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. No.939: US Department of Agriculture.
  • Panneerselvam P, Sahoo S, Senapati A, Kumar U, Mitra D, Parameswaran C, Nayak AK, Kumar A, Jahan A, Nayak AK. 2019. Understanding interaction effect of arbuscular mycorrhizal fungi in rice under elevated carbon dioxide conditions. J Basic Microbiol. 59(12):1217–1228. doi:10.1002/jobm.201900294.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society. 55(1):158–161. doi:10.1016/S0007-1536(70)80110-3.
  • Sakurai G, Iizumi T, Nishimori M, Yokozawa M. 2014. How much has the increase in atmospheric CO2 directly affected past soybean production? Sci Rep. 4(1):4978. doi:10.1038/srep04978.
  • Samal SK, Dwivedi SK, Rao KK, Choubey AK, Prakash V, Kumar S, Mishra JS, Bhatt BP, Moharana PC. 2020. Five years’ exposure of elevated atmospheric CO2 and temperature enriched recalcitrant carbon in soil of subtropical humid climate. Soil Till Res. 203:104707. doi:10.1016/j.still.2020.104707
  • Schnürer J, Rosswall T. 1982. fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol. 43(6):1256–1261. doi:10.1128/aem.43.6.1256-1261.1982.
  • Shimotsuma M, Uchida Y, Nakajima Y, Akiyama H. 2017. The effects of rice (Oryza sativa L. ssp. japonica) husk biochar on nitrogen dynamics during the decomposition of hairy vetch in two soils under high-soil moisture condition. Soil Sci Plant Nutr. 63(2):178–184. doi:10.1080/00380768.2017.1290498.
  • Stanford G, English L. 1949. Use of the flame photometer in rapid soil tests for K and Ca. Agron J. 41(9):446–447. doi:10.2134/agronj1949.00021962004100090012x.
  • Stenberg B, Johansson M, Pell M, Sjödahl-Svensson K, Stenström J, Torstensson L. 1998. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biol Biochem. 30(3):393–402. doi:10.1016/S0038-0717(97)00125-9.
  • Subbaiah B, Asija G. 1956. A rapid procedure for estimation of available nitrogen in soil. Curr Sci. 25:259–260.
  • Subedi R, Taupe N, Pelissetti S, Petruzzelli L, Bertora C, Leahy JJ, Grignani C. 2016. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type. J Environ Manage. 166:73–83. doi:10.1016/j.jenvman.2015.10.007
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1(4):301–307. doi:10.1016/0038-0717(69)90012-1.
  • Tabatabai MA, Bremner JM. 1972. Assay of urease activity in soils. Soil Biol Biochem. 4(4):479–487. doi:10.1016/0038-0717(72)90064-8.
  • Tangen BA, Bansal S. 2020. Soil organic carbon stocks and sequestration rates of inland, freshwater wetlands: sources of variability and uncertainty. Sci Total Environ. 749:141444. doi:10.1016/j.scitotenv.2020.141444
  • Walkley A, Black I. 1934. Chromic acid titration for determination of soil organic matter. Soil Sci. 63(4):251. doi:10.1097/00010694-194704000-00001.
  • Wang HC, Feng LY, Chen YG. 2012. Advances in biochar production from wastes and its applications. Chem Ind Eng Prog (In Chinese). 31:907–914.
  • Wang P, Liu Y, Li L, Cheng, K, Zheng, J, Zhang, X, Zheng, J, Joseph, S, Pan, G. 2015. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci Rep. 5(1):1–13. doi:10.1038/srep15704.
  • Wang J, Liu X, Zhang X, Li L, Lam SK, Pan G. 2019a. Changes in plant C, N and P ratios under elevated CO2 and canopy warming in a rice-winter wheat rotation system. Sci Rep. 9(1):5424. doi:10.1038/s41598-019-41944-1.
  • Wang C, Shen J, Liu J, Qin H, Yuan Q, Fan F, Hu Y, Wang J, Wei W, Li Y, et al. 2019b. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: a four-year study. Soil Biol Biochem. 135:251–263. doi:10.1016/j.soilbio.2019.05.012
  • Wang J, Xiong Z, Kuzyakov Y. 2016. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy. 8(3):512–523. doi:10.1111/gcbb.12266.
  • Wei L, Razavi BS, Wang W, Zhu Z, Liu S, F WJ, Kuzyakov Y, Ge T. 2019. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biol Biochem. 135:134–143. doi:10.1016/j.soilbio.2019.04.016
  • Wold S, Esbensen KPG, Geladi P. 1987. Principal component analysis. Chemometr Intell Lab Syst. 2(1–3):37–52. doi:10.1016/S0167-7012(98)00103-1.
  • Xie Z, Xu Y, Liu G, Liu Q, Zhu J, Tu C, Amonette, J.E, Cadisch, G, Yong, J.W.H, Hu, S. 2013. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil. 370(1):527–540. doi:10.1007/s11104-013-1636-x.
  • Xiong J, He Z, Shi S, Kent A, Deng Y, Wu L, Van Nostrand JD, Zhou J. 2015. Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci Rep. 1:9316. doi:10.1038/srep09316
  • Xionghui J, Jiamei W, Hua P, Lihong S, Zhenhua Z, Zhaobing L, Faxiang T, Liangjie H, Jian Z. 2012. The effect of rice straw incorporation into paddy soil on carbon sequestration and emissions in the double cropping rice system. J Sci Food Agric. 92(5):1038–1045. doi:10.1002/jsfa.5550.
  • Xu S, Shi X, Zhao Y, Yu D, Li C, Wang S, Tan M, Sun W. 2011. Carbon sequestration potential pf recommended management practices for paddy soils of China, 1980 – 2050. Geoderma. 166(1):206–213. doi:10.1016/j.geoderma.2011.08.002.
  • Yagi K, Sriphirom P, Cha-un N, Fusuwankaya K, Chidthaisong A, Damen B, Towprayoon S. 2019. Potential and promisingness of technical options for mitigating greenhouse gas emissions from rice cultivation in Southeast Asian countries. Soil Scie Plant Nutr. 1–13. doi:10.1080/00380768.2019.1683890
  • Yasodha A, Devasenapathy P, Ramalakshmi A. 2020. Effect of Arbuscular mycorrhiza on growth and yield of lowland rice ecosystem. Icjs. 8(1):2194–2197. doi:10.22271/chemi.2020.v8.i1ag.8594.
  • Yoo G, Kim YJ, Lee YO, Ding W. 2016. Investigation of greenhouse gas emissions from the soil amended with rice straw biochar. KSCE J Civil Eng. 20(6):2197–2207. doi:10.1007/s12205-015-0449-2.
  • Yu Y, Zhang J, Petropoulos E, Baluja MQ, Zhu C, Zhu J, Lin X, Feng Y. 2018. divergent responses of the diazotrophic microbiome to elevated CO2 in two rice cultivars. Front Microbiol. 9(1139). doi:10.3389/fmicb.2018.01139.
  • Zeng Q, Liu B, Gilna B, Zhang Y, Zhu C, Ma H, Pang J, Chen G, Zhu J. 2011. Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed (Echinochloa crusgalli L.). Nutr Cycl Agroecosyst. 89:93–104. doi:10.1007/s10705-010-9379-z
  • Zhang A, Bian R, Pan G, Cui L, Hussain Q, Li L, Zheng J, Zheng J, Zhang X, Han X, et al. 2012. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese Rice Paddy: a field study of 2 consecutive rice growing cycles. Field Crops Res. 127:153–160. doi:10.1016/j.fcr.2011.11.020
  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G. 2016. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol. 210(3):1022–1032. doi:10.1111/nph.13838.
  • Zhou H, Zhang D, Wang P, Liu X, Cheng K, Li L, Zheng J, Zhang X, Zheng J, Crowley D, et al. 2017. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a Meta-analysis. Agric Ecosyst Environ. 239:80–89. doi:10.1016/j.agee.2017.01.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.