248
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of waterlogging and heat stress on rice rhizosphere microbiome assembly and potential function in carbon and nitrogen transformation

, , , &
Pages 1920-1932 | Received 03 Feb 2022, Accepted 18 Sep 2022, Published online: 27 Sep 2022

References

  • Ahn YH. 2006. Sustainable nitrogen elimination biotechnologies: a review. Process Biochem. 41:1709–1721. doi:10.1016/j.procbio.2006.03.033.
  • Allison SD, Treseder KK. 2010. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biol. 14:2898–2909. doi:10.1111/j.1365-2486.2008.01716.x.
  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol. 15:955–960. doi:10.1111/j.1365-2486.2008.01758.x.
  • Baetz U, Martinoia E. 2014. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19:90–98. doi:10.1016/j.tplants.2013.11.006.
  • Banerjee S, Walder F, Buchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA. 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13(7):1722–1736. doi:10.1038/s41396-019-0383-2.
  • Bhatti AA, Haq S, Bhat RA. 2017. Actinomycetes benefaction role in soil and plant health. Microb Pathogenesis. 111:458–467. doi:10.1016/j.micpath.2017.09.036.
  • Björn B, Judith P, Dumont MG. 2016. Microbial community structure in the rhizosphere of rice plants. Front Microbiol. 6:1537. doi:10.3389/fmicb.2015.01537.
  • Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y. 2014. Microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS One. 9:e93282. doi:10.1371/journal.pone.0093282.
  • Blaud A, van der Zaan B, Menon M, Lair GJ, Zhang DY, Huber P, Schiefer J, Blum WEH, Kitzler B, Huang WE. 2018. The abundance of nitrogen cycle genes and potential greenhouse gas fluxes depends on land use type and little on soil aggregate size. Appl Soil Ecol. 125:1–11. doi:10.1016/j.apsoil.2017.11.026.
  • Bonanomi G, De Filippis F, Cesarano G, La Storia A, Ercolini D, Scala F. 2016. Organic farming induces changes in soil microbiota that affect agro-ecosystem functions. Soil Biol Biochem. 103:327–336. doi:10.1016/j.soilbio.2016.09.005.
  • Bradford MA, McCulley RL, Crowther TW, Oldfield EE, Wood SA, Fierer N. 2019. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat Ecol Evol. 3:223–231. doi:10.1038/s41559-018-0771-4.
  • Brimecombe MJ, De Leij FAAM, Lynch JM. 2007. Rhizodeposition and microbial populations. In: Pinton R, Veranini Z, Nannipieri P, editors. The rhizosphere biochemistry and organic substances at the soil–plant interface. New York (USA): Taylor & Francis Group; p. 73–98.
  • Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, Arrouays D, Philippot L. 2011. Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J. 5:532–542. doi:10.1038/ismej.2010.130.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7:335–336. doi:10.1038/nmeth.f.303.
  • Cheng Y, Zhou WG, Gao CF, Lan K, Gao Y, Wu QY. 2009. Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biot. 84:777–781.
  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE. 1994. The phylogeny of the genus clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 44:812–826. doi:10.1099/00207713-44-4-812.
  • Colloff MJ, Wakelin SA, Gomez D, Rogers SL. 2008. Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol Biochem. 40:1637–1645. doi:10.1016/j.soilbio.2008.01.019.
  • Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A. 2016. The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol Fert Soils. 52:15–29. doi:10.1007/s00374-015-1046-8.
  • Craine JM, Gelderman TM. 2016. Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biol Biochem. 43:455–457. doi:10.1016/j.soilbio.2010.10.011.
  • de Boer W, Folman LB, Summerbell RC, Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 29:795–811. doi:10.1016/j.femsre.2004.11.005.
  • Drenovsky RE, Vo D, Graham KJ. 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb Ecol. 48:424–430. doi:10.1007/s00248-003-1063-2.
  • Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26:2460–2461. doi:10.1093/bioinformatics/btq461.
  • Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition. Soil Biol Biochem. 35:837–843. doi:10.1016/S0038-0717(03)00123-8.
  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry. 70:153–226. doi:10.1007/s10533-004-0370-0.
  • Gavira M, Roldan MD, Castillo F, Moreno-Vivian C. 2002. Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158. J Bacteriol. 184:1693–1702. doi:10.1128/JB.184.6.1693-1702.2002.
  • Grisi B, Grace C, Brookes PC, Benedetti A, Dell’abate MT. 1998. Temperature effects on organic matter and microbial biomass dynamics in temperate and tropical soils. Soil Biol Biochem. 30:1309–1315. doi:10.1016/S0038-0717(98)00016-9.
  • Hayden EL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, DeSantis TZ, Andersen GL, Williams AL. 2012. Changes in the microbial community structure of bacteria: archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol. 14:3081–3096. doi:10.1111/j.1462-2920.2012.02855.x.
  • Huws SA, Edwards JE, Kim EJ, Scollan ND. 2007. Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Meth. 70:565–569. doi:10.1016/j.mimet.2007.06.013.
  • Kandeler E, Brune T, Enowashi E, Dörr N, Guggenberger G, Lamersdorf N, Philippot L. 2009. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile. FEMS Microbiol Ecol. 67:444–454. doi:10.1111/j.1574-6941.2008.00632.x.
  • Kennedy AC. 1999. Bacterial diversity in agroecosystems. Agr Ecosyst Environ. 74:65–76. doi:10.1016/S0167-8809(99)00030-4.
  • Kuanar SR, Ray A, Sethi SK, Chattopadhyay K, Sarkar RK. 2017. Physiological basis of stagnant flooding tolerance in rice. Rice Sci. 24:73–84. doi:10.1016/j.rsci.2016.08.008.
  • Kuzyakov Y, Domanski G. 2020. Carbon input by plants into the soil. J Plant Nutr Soil Sc. 163:421–431. doi:10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R.
  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 31:814–821. doi:10.1038/nbt.2676.
  • Levy-Booth DJ, Prescott CE, Grayston SJ. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem. 75:11–25. doi:10.1016/j.soilbio.2014.03.021.
  • Li MY, Ren LH, Zhang JC, Luo L, Qin PF, Zhou YY, Huang C, Tang JY, Huang HL, Chen AW. 2019. Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci Total Environ. 651:2166–2174. doi:10.1016/j.scitotenv.2018.10.152.
  • Liu D, Keiblinger KM, Schindlbacher A, Wegner U, Sun H, Fuchs S, Lassek C, Riedel K, Zechmeister-Boltenstern S. 2017. Microbial functionality as affected by experimental warming of a temperate mountain forest soil—A metaproteomics survey. Applied Soil Ecol. 117–118:196–202. doi:10.1016/j.apsoil.2017.04.021.
  • McSpadden Gardener BB, Driks A. 2004. Overview of the nature and application of biocontrol microbes: bacillus spp. Phytopathology. 94:1244. doi:10.1094/PHYTO.2004.94.11.1244.
  • Mickan B, Abbott L, Fan J, Hart M, Siddique K, Solaiman Z, Jenkins SN. 2018. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54:55–70. doi:10.1007/s00374-017-1238-5.
  • Mille-Lindblom C, Fischer H, Tranvik LJ. 2006. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. OIKOS. 113:233–242. doi:10.1111/j.2006.0030-1299.14337.x.
  • Ng EL, Patti AF, Rose MT, Schefe CR, Wilkinson K, Smernik RJ, Cavagnaro TR. 2014. Does the chemical nature of soil carbon drive the structure and functioning of soil microbial communities? Soil Biol Biochem. 70:54–61. doi:10.1016/j.soilbio.2013.12.004.
  • Paranychianakis NV, Tsiknia M, Giannakis G, Nikolaidis NP, Kalogerakis N. 2013. Nitrogen cycling and relationships between ammonia oxidizers and denitrifiers in a clay-loam soil. Appl Microbiol Biot. 97:5507–5515. doi:10.1007/s00253-013-4765-5.
  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol. 90:635–644. doi:10.1007/s11103-015-0337-7.
  • Pettersson M, Bååth E. 2003. Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiol Ecol. 45:13–21. doi:10.1016/S0168-6496(03)00106-5.
  • Qiu H, Ge T, Liu J, Chen X, Hu Y, Wu J, Su Y, Kuzyakov Y. 2018. Effects of biotic and abiotic factors on soil organic matter mineralization: experiments and structural modeling analysis. Eur J Soil Biol. 84:27–34. doi:10.1016/j.ejsobi.2017.12.003.
  • Reed SC, Townsend AR, Cleveland CC, Nemergut DR. 2010. Microbial community shifts influence patterns in tropical forest nitrogen fixation. Oecologia. 164:521–531. doi:10.1007/s00442-010-1649-6.
  • Ren M, Zhang Z, Wang X, Zhou Z, Chen D, Zeng H, Zhao S, Chen L, Hu T, Zhang C. 2018. Diversity and contributions to nitrogen cycling and carbon fixation of soil salinity shaped microbial communities in Tarim basin. Front Microbiol. 9:431. doi:10.3389/fmicb.2018.00431.
  • Riah-Anglet W, Trinsoutrot-Gattin I, Martin-Laurent F, Laroche-Ajzenberg E, Norini MP, Latour X, Laval K. 2009. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Global Change Biol. 15:2615–2625. doi:10.1111/j.1365-2486.2009.01959.x.
  • Riah-Anglet W, Trinsoutrot-Gattin I, Martin-Laurent F, Laroche-Ajzenberg E, Norini MP, Latour X, Laval K. 2015. Soil microbial community structure and function relationships: a heat stress experiment. Appl Soil Ecol. 86:121–130. doi:10.1016/j.apsoil.2014.10.001.
  • Sánchez-García M, Sánchez-Monedero MA, Roig A, López-Cano I, Moreno B, Benitez E, Cayuela ML. 2016. Compost vs biochar amendment: a two-year field study evaluating soil C build-up and N dynamics in an organically managed olive crop. Plant Soil. 401:1–14. doi:10.1007/s11104-016-2794-4.
  • Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S. 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem. 43:1417–1425. doi:10.1016/j.soilbio.2011.03.005.
  • Sharmin F, Wakelin S, Huygens F, Hargreaves M. 2013. Firmicutes dominate the bacterial taxa within sugar-cane processing plants. Sci Rep. 3:3107.
  • Strickland MS, Rousk J. 2010. Considering fungal: bacterial dominance in soils – methods, controls, and ecosystem implications. Soil Biol Biochem. 42:1385–1395. doi:10.1016/j.soilbio.2010.05.007.
  • Tanaka N, Yutani K, Aye T, Jinadasa KBSN. 2007. Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature. Hydrobiologia. 583:165–172. doi:10.1007/s10750-006-0483-7.
  • Tsujimoto R, Kotani H, Yokomizo K, Yamakawa H, Nonaka A, Fujita Y. 2018. Functional expression of an oxygen-labile nitrogenase in an oxygenic photosynthetic organism. Sci Rep. 8(1):7380. doi:10.1038/s41598-018-25396-7.
  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ. 2010. Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono‐and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ. 23:1237–1245. doi:10.1046/j.1365-3040.2000.00628.x.
  • Xiong JB, Sun HB, Peng F, Zhang HY, Xue X, Gibbons SM, Gilbert JA, Chu HY. 2014. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol Ecol. 89:281–292.
  • Yadav S, Kaushik R, Saxena AK, Arora DK. 2011. Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microb. 51:98–106.
  • Zehr JP, Jenkins BD, Short SM, Steward GF. 2003. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol. 5:539–554.
  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi SJ, Cho HJ, Karaoz U, Loque D, Bowen BP. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 3:470–480.
  • Zhang NL, Wan SQ, Guo JX, Han GD, Gutknecht J, Schmid B, Yu L, Liu WX, Bi J, Wang Z, et al. 2015. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biol Biochem. 89:12–23.
  • Zheng W, Zhao ZY, Gong QL, Zhai BN, Li ZY. 2018. Effects of cover crop in an apple orchard on microbial community composition, networks, and potential genes involved with degradation of crop residues in soil. Biol Fert Soils. 54:743–759.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.