139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of soybean–wheat rotation on soil aggregation, organic nitrogen and net nitrogen mineralization characteristics: a four-year field study

, , , , &
Pages 1955-1972 | Received 16 Jan 2022, Accepted 23 Sep 2022, Published online: 07 Oct 2022

References

  • Anders MM, Brye KR, Olk DC, Schmid BT. 2012. Rice rotation and tillage effects on soil aggregation and aggregate carbon and nitrogen dynamics. Soil Sci Soc Am J. 76(3):994–1004. doi:10.2136/sssaj2010.0436.
  • Arcand MM, Lemke R, Farrell RE, Knight JD. 2014. Nitrogen supply from belowground residues of lentil and wheat to a subsequent wheat crop. Biol Fert Soils. 50(3):507–515. doi:10.1007/s00374-013-0873-8.
  • Are M, Kaart T, Selge A, Astover A, Reintam E. 2018. The interaction of soil aggregate stability with other soil properties as influenced by manure and nitrogen fertilization. Zemdirbyste. 105(3):195–202. doi:10.13080/z-a.2018.105.025.
  • Beckie HJ, Brandt SA, Schoenau JJ, Campbell CA, Henry JL, Janzen HH. 1997. Nitrogen contribution of field pea in annual cropping systems. 2. Total nitrogen benefit. Cana J Plant Sci. 77(3):323–331. doi:10.4141/P96-158.
  • Blake GR, Hartge K. Bulk density. In: Klute A, editor. Methods of soil analysis. part 1. physical and mineralogical methods. 2nd, Soil Science Society of America Book Series, No. 5. Madison (WI): American Society of Agronomy.1986; p. 363–375. doi:10.2136/sssabookser5.1.2ed.c13.
  • Cambardella CA, Elliott ET. 1993. Methods for physical separation and characterization of soil organic matter fractions. Geoderma. 56(1–4):449–457. doi:10.1016/0016-7061(93)90126-6.
  • Celik I, Gunal H, Budak M, Akpinar C. 2010. Effects of long–term organic and mineral fertilizers on bulk density and penetration resistance in semi–arid mediterranean soil conditions. Geoderma. 160(2):236–243. doi:10.1016/j.geoderma.2010.09.028.
  • Chen YJ, Ren K, Su J, He X, Zhao GK, Hu BB, Chen Y, Xu ZL, Jin Y, Zou CM. 2020. Rotation and organic fertilizers stabilize soil water–stable aggregates and their associated carbon and nitrogen in flue–cured tobacco production. J Soil Sci Plant Nut. 20(1):192–205. doi:10.1007/s42729-019-00118-8.
  • Clarholm M. 1985. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem. 17(2):181–187. doi:10.1016/0038-0717(85)90113-0.
  • Clivot H, Mary B, Valé M, Cohan J, Champolivier L, Piraux F, Laurent F, Justes E. 2017. Quantifying in situ and modeling net nitrogen mineralization from soil organic matter in arable cropping systems. Soil Biol Biochem. 111:44–59. doi:10.1016/j.soilbio.2017.03.010
  • Dong W, Hu C, Chen S, Zhang Y. 2009. Tillage and residue management effects on soil carbon and CO2 emission in a wheat–corn double–cropping system. Nutr Cycl Agroecosys. 83(1):27–37. doi:10.1007/s10705-008-9195-x.
  • Fernández FG, Fabrizzi KP, Naeve SL. 2016. Corn and soybean’s season–long in–situ nitrogen mineralization in drained and undrained soils. Nutr Cycl Agroecosys. 107(1):1–15. doi:10.1007/s10705-016-9810-1.
  • Gamborg M, Andersen PK, Baker JL, Budtz-Jørgensen E, Jørgensen T, Jensen G, Sørensen TIA. 2009. Life course path analysis of birth weight, childhood growth, and adult systolic blood pressure. Am J Epidemiol. 169(10):1167–1178. doi:10.1093/aje/kwp047.
  • Gartzia-Bengoetxea N, González-Arias A, Merino A, Arano IMD. 2009. Soil organic matter in soil physical fractions in adjacent semi-natural and cultivated stands in temperate atlantic forests. Soil Biol Biochem. 41(8):1674–1683. doi:10.1016/j.soilbio.2009.05.010.
  • Giumbelli LD, Loss A, Ventura BS, Junior ES, Almeida J, Piccolo MC, ÁL M, Kurtz C, Brunetto G, Comin JJ. 2020. Aggregation index, carbon, nitrogen, and natural abundance of 13C and 15N in soil aggregates and bulk soil cultivated with onion under crop successions and rotations. Soil Res. 58:622–635. doi:10.1071/SR19346
  • Guinet M, Nicolardot B, Voisin AS. 2020. Nitrogen benefits of ten legume pre–crops for wheat assessed by field measurements and modelling. Eur J Agron. 20:151–156. doi:10.1016/j.eja.2020.126151
  • Hu W, Tian S, Di Q, Liu J, Zhang S. 2018. Nitrogen mineralization simulation dynamic in tobacco soil. J Soil Sci Plant Nut. 18(2):448–465. doi:10.4067/S0718-95162018005001401.
  • Jia J, Bai J, Gao H, Wen X, Zhang G, Cui B, Liu X. 2017. In situ soil net nitrogen mineralization in coastal salt marshes (Suaeda salsa) with different flooding periods in a Chinese estuary. Ecol Indic. 73:559–565. doi:10.1016/j.ecolind.2016.10.012
  • Jiang YZ, Liu QL, Zhang YG, Li ZH, Zou Y, Zhu JW, Shi JX, Wang P. 2018. Effect of crop rotation and continuous cropping on nitrogen mineralization characteristics in yellow cornfield. Int J Agric Biol. 20(5):1175–1180. doi:10.17957/IJAB/15.0646.
  • Kemper WD, Rosenau RC. 1986. Aggregate stability and size distribution. In: Klute A, editor. Methods of soil analysis. part 1. physical and mineralogical methods. 2nd, Agronomy Monograph, No. 9. Madison (WI): American Society of Agronomy; p. 425–442.
  • Kramer C, Gleixner G. 2008. Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem. 40(2):425–433. doi:10.1016/j.soilbio.2007.09.016.
  • Laberge G, Haussmann BIG, Ambus P, Hgh-Jensen H. 2011. Cowpea N rhizodeposition and its below–ground transfer to a co–existing and to a subsequent millet crop on a sandy soil of the Sudano–Sahelian eco–zone. Plant Soil. 340(s1–2):369–382. doi:10.1007/s11104-010-0609-6.
  • Li LL, Li ST. 2014. Nitrogen mineralization from animal manures and its relation to organic N fractions. J Integr Agr. 13(9):2040–2048. doi:10.1016/S2095-3119(14)60769-3.
  • Li HX, Mollier A, Ziadi N, Shi YC, LÉ P, Morel C. 2017. Soybean root traits after 24 years of different soil tillage and mineral phosphorus fertilization management. Soil Till Res. 165:258–267. doi:10.1016/j.still.2016.09.002
  • Liu MY, Ussiri DAN, Lal R. 2016. Soil organic carbon and nitrogen fractions under different land uses and tillage practices. Commun Soil Sci Plan. 47(12):1528–1541. doi:10.1080/00103624.2016.1194993.
  • Lü HJ, He HB, Zhao JS, Zhang W, Xie HT, Hu GQ, Liu X, Wu YY, Zhang XD. 2013. Dynamics of fertilizer–derived organic nitrogen fractions in an arable soil during a growing season. Plant Soil. 373(1–2):595–607. doi:10.1007/s11104-013-1824-8.
  • Lupwayi NZ, Kennedy AC. 2007. Grain legumes in northern great plains: impacts on selected biological soil processes. Agron J. 99(6):1700–1709. doi:10.2134/agronj2006.0313s.
  • Marschner P, Rengel Z. 2007. Contributions of rhizosphere interactions to soil biological fertility. In: Abbott LK, Murpgy DV editors. Soil Biological Fertility—A Key to Sustainable Land Use in Agriculture. Springer, Dordrecht, The Netherlands. p. 81–98. doi:10.1007/978-1-4020-6619-1_5.
  • N’Dayegamiye A, Whalen JK, Tremblay G, Nyiraneza J, Grenier M, Drapeau A, Bipfubusa M. 2015. The benefits of legume crops on corn and wheat yield, nitrogen nutrition, and soil properties improvement. Agron J. 107(5):1653–1665. doi:10.2134/agronj14.0416.
  • Nelson DW, Sommers LE. 1973. Determination of total nitrogen in plant material 1. Agron J. 65(1):109–112. doi:10.2134/agronj1973.00021962006500010033x.
  • Niemi RM, Vepsäläinen M, Wallenius K, Simpanen S, Alakukku L, Pietola L. 2005. Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Appl Soil Ecol. 30(2):113–125. doi:10.1016/j.apsoil.2005.02.003.
  • Oliveira M, Barré P, Trindade H, Virto I. 2019a. Different efficiencies of grain legumes in crop rotations to improve soil aggregation and organic carbon in the short–term in a sandy Cambisol. Soil Till Res. 186:23–35. doi:10.1016/j.still.2018.10.003
  • Oliveira M, Castro C, Coutinho J, Trindade H. 2019b. N supply and pre–cropping benefits to triticale from three legumes in rainfed and irrigated mediterranean crop rotations. Field Crop Res. 237:32–42. doi:10.1016/j.fcr.2019.04.010
  • Power JF, Doran JW, Wilhelm WW. 1986. Uptake of nitrogen from Soil, fertilizer, and crop residues by no-till corn and soybean. Soil Sci Soc Am J. 50(1):137–142. doi:10.2136/sssaj1986.03615995005000010027x.
  • Qiang SC, Zhang FC, Dyck M, Zhang Y, Xiang YZ, Fan JL. 2019. Determination of critical nitrogen dilution curve based on leaf area index for winter wheat in the Guanzhong Plain, Northwest China. J Integr Agr. 18(10):2369–2380. doi:10.1016/S2095-3119(19)62688-2.
  • Rabot E, Wiesmeier M, Schlüter S, Vogel HJ. 2018. Soil structure as an indicator of soil functions: a review. Geoderma. 314:122–137. doi:10.1016/j.geoderma.2017.11.009
  • Raison RJ, Connell MJ, Khanna PK. 1987. Methodology for studying fluxes of soil mineral–N in situ. Soil Biol Biochem. 19(5):521–530. doi:10.1016/0038-0717(87)90094-0.
  • Reckling M, Bergkvist G, Watson CA, Stoddard FL, Zander PM, Walker RL, Pristeri A, Toncea I, Bachinger J. 2016. Trade–Offs between economic and environmental impacts of introducing legumes into cropping systems. Front Plant Sci. 7:669–683. doi:10.3389/fpls.2016.00669
  • Sainju UM, Lenssen AW, Allen BL, Stevens WB, Jabro JD. 2017. Soil residual nitrogen under various crop rotations and cultural practices. J Plant Nutr Soil Sc. 180(2):187–198. doi:10.1002/jpln.201600496.
  • Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology. 85(3):591–602. doi:10.1890/03-8002.
  • Sekaran U, Sagar KL, Kumar S. 2020. Soil aggregates, aggregate–associated carbon and nitrogen, and water retention as influenced by short and long–term no–till systems. Soil Till Res. 208:104885. doi:10.1016/j.still.2020.104885
  • Shen X, Yang F, Xiao CW, Zhou Y. 2020. Increased contribution of root exudates to soil carbon input during grassland degradation. Soil Biol Biochem. 146:107817. doi:10.1016/j.soilbio.2020.107817
  • Shi XZ, Yang GX, Yu DS, Xu SX, Warner ED, Petersen GW, Sun WX, Zhao YC, Easterling WE, Wang HJ. 2010. A WebGIS system for relating genetic soil classification of China to soil taxonomy. Comput Geosci-UK. 36(6):768–775. doi:10.1016/j.cageo.2009.10.005.
  • Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res. 79(1):7–31. doi:10.1016/j.still.2004.03.008.
  • Six J, Elliott ET, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 32(14):2099–2103. doi:10.1016/S0038-0717(00)00179-6.
  • Soon YK, Lupwayi NZ. 2008. Influence of pea cultivar and inoculation on the nitrogen budget of a pea–wheat rotation in northwestern Canada. Can J Plant Sci. 88(1):1–9. doi:10.4141/CJPS06055.
  • Stevenson FJ 1982. Organic forms of soil nitrogen. In: Stevenson FJ, editor. Nitrogen in Agricultural Soils (Madison (WI): American Society of Agronomy); p. 1–42.
  • Stevenson FC, Kessel CV. 1996. A Landscape-Scale assessment of the nitrogen and Non-Nitrogen rotation benefits of pea. Soil Sci Soc Am J. 60(6):1797–1805. doi:10.2136/sssaj1996.03615995006000060027x.
  • Trabelsi D, Ammar HB, Mengoni A, Mhamdi R. 2012. Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol Biochem. 54:1–6. doi:10.1016/j.soilbio.2012.05.013
  • Udom BE, Omovbude S. 2018. Soil physical properties and carbon/nitrogen relationships in stable aggregates under legume and grass fallow. Acta Ecologica Sinica. 39:56–62. doi:10.1016/j.chnaes.2018.05.008
  • Vance CP. 2001. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127(2):390–397. doi:10.2307/4280097.
  • Van VJA, Kuikman PJ. 1990. Soil structural aspects of decom posiion of organic matter by micro-organisms. Biogeochemstry. 11(3):213–234. doi:10.1007/BF00004497.
  • Wagai R, Kitayama K, Satomura T, Fujinuma R, Balser T. 2011. Interactive influences of climate and parent material on soil microbial community structure in Bornean tropical foresy ecosystems. Ecol Res. 26(3):627–636. doi:10.1007/s11284-011-0822-7.
  • Wang H, Guan DS, Zhang RD, Chen YJ, Hu YT, Xiao L. 2014. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecol Eng. 70:206–211. doi:10.1016/j.ecoleng.2014.05.027
  • Wang SQ, He XX, Zhang Z, Ye SM. 2020a. Tea planting age effects on the soil aggregation and aggregate–related organic matters, microbial biomass and activity in the Southern Guangxi of China. Arch Agron Soil Sci. 67(7):987–1001. doi:10.1080/03650340.2020.1771316.
  • Wang R, Wu H, Sardans J, Li TP, Liu HY, Peñuelas J, Dijkstra FA, Jiang Y. 2020b. Carbon storage and plant-soil linkages among soil aggregates as affected by nitrogen enrichment and mowing management in a meadow grassland. Plant Soil. 457:1–2. doi:10.1007/s11104-020-04749-0
  • Wu HQ, Du SY, Zhang YL, An J, Zou HT, Zhang YL, Yu N. 2019. Effects of irrigation and nitrogen fertilization on greenhouse soil organic nitrogen fractions and soil–soluble nitrogen pools. Agr Water Manage. 216:415–424. doi:10.1016/j.agwat.2019.02.020
  • Xie WJ, Chen QF, Wu LF, HJ Y, JK X, YP Z. 2020. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: a 4–year field study. Soil Till Res. 198:104535. doi:10.1016/j.still.2019.104535
  • Yang J, Guo WQ, Wang F, Wang F, Zhang LM, Zhou BQ, Xing SH, Yang WH. 2021. Dynamics and influencing factors of soluble organic nitrogen in paddy soil under different long-term fertilization treatments. Soil Till Ees. 212:105077. doi:10.1016/j.still.2021.105077
  • Yang ZP, Zheng SX, Nie J, Liao YL, Xie J. 2014. Effects of long–term winter planted green manure on distribution and storage of organic carbon and nitrogen in water–stable aggregates of reddish paddy soil under a double–rice cropping system. J Integr Agr. 13(8):1772–1781. doi:10.1016/S2095-3119(13)60565-1.
  • Zapata F, Danso SKA, Hardarson G, Fried M. 1987. Time course of nitrogen fixation in field-grown soybean using Nitrogen-15 methodology. Agron J. 79(1):172–176. doi:10.2134/agronj1987.00021962007900010035x.
  • Zhang HY, Niu LA, Hu KL, Hao JM, Fan L, Xiang W, Hong C. 2020. Long–term effects of nitrogen and phosphorus fertilization on soil aggregate stability and aggregate–associated carbon and nitrogen in the North China plain. Soil Sci Soc Am J. 85:732–745. doi:10.1002/saj2.20197
  • Zhang Y, Sheng ZE, Wang YA, Su SM, Bai LY, Xu CX, Zeng XB. 2021. Long–term manure application enhances the stability of aggregates and aggregate–associated carbon by regulating soil physicochemical characteristics. Catena. 203:105342. doi:10.1016/j.catena.2021.105342
  • Zhang SL, Wang RJ, Yang XY, Sun RH, Li QH. 2016. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol. Sci Rep-UK. 6(1):39107. doi:10.1038/srep39107.
  • Zhao RF, Chen XP, Zhang FS, Zhang H, Schroder J, Römheld V. 2006. Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agron J. 98(4):938–945. doi:10.2134/agronj2005.0157.
  • Zou CM, Li Y, Huang W, Zhao GK, Pu GR, Su JE, Coyne MS, Chen Y, Wang LC, Hu XD, et al. 2018. Rotation and manure amendment increase soil macro– aggregates and associated carbon and nitrogen stocks in flue–cured tobacco production. Geoderma. 325:49–58. doi:10.1016/j.geoderma.2018.03.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.