230
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plant diversity and cattle grazing affecting soil and crop yield in tropical sandy soils

, ORCID Icon, , , , , & show all
Pages 2053-2064 | Received 23 Feb 2022, Accepted 06 Oct 2022, Published online: 31 Oct 2022

References

  • Alef K, Nannipieri P. 1995. Methods in applied soil microbiology and biochemistry. London: Academic Press.
  • Almeida DO, Bayer C, Almeida HC. 2016. Microbial fauna and attributes of an Argissol under cover systems in Southern Brazil. Pesq Agropec Bras. 51(9):1140–1147. doi:10.1590/s0100-204x2016000900013.
  • Alvares CA, Stape JL, Sentelhas PC, Jlm G, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorol Zeitschrift. 22(6):711–728. doi:10.1127/0941-2948/2013/0507.
  • Andersen R, Chapman SJ, Artz RRE. 2013. Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem. 57:979–994. doi:10.1016/j.soilbio.2012.10.003.
  • Anderson JPE, Domsch KH. 1993. The metabolic quotient (qCO2) as specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem. 25(3):393–395. doi:10.1016/0038-0717(93)90140-7.
  • Assunção SA, Pereira MG, Rosset JS, Rerbara RLL, García AC. 2019. Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Sci Total Environ. 658:901–911. doi:10.1016/j.scitotenv.2018.12.271.
  • Balbino LC, Cordeiro LAM, Porfírio-da-Silva V, Moraes AD, Martínez GB, Alvarenga RC, Galerani PR. 2011. Technological evolution and productive arrangements of integrated crop-livestock-forest systems in Brazil. Pesqui Agropecu Bras. 46:0–10.
  • Balota EL, Chaves JCD. 2011. Microbial activity in soil cultivated with different summer legumes in coffee crop. Braz. Arch. Biol. Technol. 54(1):35–44. doi:10.1590/S1516-89132011000100005.
  • Booth MS, Stark JM, Rastetter E. 2005. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr. 75(2):139–157. doi:10.1890/04-0988.
  • Brookes PC. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fert Soils. 19(4):269–279. doi:10.1007/BF00336094.
  • Cambardella CA, Elliott ET. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J. 56(3):777–783. doi:10.2136/sssaj1992.03615995005600030017x.
  • Carauta M, Latynskiy E, Mössinger J, Gil J, Libera A, Hampf A, Monteiro L, Siebold M, Berger T. 2018. Can preferential credit programs speed up the adoption of low-carbon agricultural systems in mato grosso, Brazil? Results from bioeconomic microsimulation. Reg Environ Change. 18(1):117–128. doi:10.1007/s10113-017-1104-x.
  • Carneiro M Aurélio, Souza E Damacena, Reis E Fialho, Pereira H Seron and Azevedo W Rogério. (2009). Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Rev. Bras. Ciênc. Solo, 33(1): 147–157. doi: 10.1590/S0100-06832009000100016.
  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology. 81(9):2359–2365. doi:10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2.
  • Carvalho PCF, Peterson CA, Nunes PAA, Martins AP, Filho WS, Bertolazi VT, Kunrath TR, Moraes A, Anghinoni I. 2018. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification. J Anim Sci. 96(8):3513–3525. doi:10.1093/jas/sky085.
  • Chávez LF, Escobar LF, Anghinoni I, Carvalho PCF, Meurer EJ. 2011. Diversidade metabólica e atividade microbiana no solo em sistema de integração lavoura-pecuária sob intensidades de pastejo. Pesqui. Agropecu. Bras. 46(10):1254–1261. doi:10.1590/S0100-204X2011001000020.
  • Chu M, Jagadamma S, Walker FR, Eash NS, Buschermohle MJ, Duncan LA. 2017. Effect of multispecies cover crop mixture on soil properties and crop yield. Agric Environ Lett. 2(1):1–5. doi:10.2134/ael2017.09.0030.
  • Cicek H, Entz MH, Martens JRT, Bullock PR. 2014. Productivity and nitrogen benefits of late-season legume cover crops in organic wheat production. Can. J. Plant Sci. 94(4):771–783. doi:10.4141/cjps2013-130.
  • Cleveland CC, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry. 85(3):235–252. doi:10.1007/s10533-007-9132-0.
  • Conab. 2020. Agricultural observatory: monitoring the brazilian grain crop. V. 7-2019/20 cropping season. Available at: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos.
  • Cordeiro CFDS, Batista GD, Lopes BP, Echer FR. 2021a. Cover crop increases soybean yield cropped after degraded pasture in sandy soil. Rev Bras de Eng Agricola E Ambient. 25(8):514–521. doi:10.1590/1807-1929/agriambi.v25n8p514-521.
  • Cordeiro CFDS, Echer FR. 2019. Interactive effects of nitrogen-fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci Rep. 9(1):1–11. doi:10.1038/s41598-019-52131-7.
  • Cordeiro CFDS, Rodrigues DR, Silva GFD, Echer FR, Calonego JC. 2022. Soil organic carbon stock is improved by cover crops in a tropical sandy soil. Agron J. 114(2):1546–1556. doi:10.1002/agj2.21019.
  • Costa NR, Andreotti M, Crusciol CAC, Pariz CM, Bossolani JW, Pascoaloto IM, Calonego JC. 2021. . In: Nutr cycl agroecosystems. p. 1–19.
  • Crème A, Rumpel C, Gastal F, Gil MDLLM, Chabbi A. 2016. Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant Soil. 402(1–2):117–128. doi:10.1007/s11104-015-2740-x.
  • Crusciol CA, Momesso L, Portugal JR, Costa CH, Bossolani JW, Costa NR, Cantarella H, Castilhos AM, Rodrigues VA, Costa C. 2021. Upland rice intercropped with forage grasses in an integrated crop-livestock system: optimizing nitrogen management and food production. Field Crops Res. 261:108008. doi:10.1016/j.fcr.2020.108008.
  • Dhakal D, Islam MA. 2018. Grass-legume mixtures for improved soil health in cultivated agroecosystem. Sustainability. 10(8):2718. doi:10.3390/su10082718.
  • Dick RP, Breakwell DP, Turco RF. 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ, editors. Methods for assessing soil quality. Madison: Soil Science Society of America; p. 247–272.
  • Donagemma G, Freitas PL, Balieiro FC, Fontana A, Spera ST, Lumbreras JF, Viana JHM, Filho JCA, Santos FC, Albuquerque MR, et al. 2016. Characterization, agricultural potential and management perspectives of light soils in Brazil. Pesqui. Agropecu. Bras. 51(9):1003–1020. doi:10.1590/s0100-204x2016000900001
  • Ellert BH, Bettany JR. 1995. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci. 75(4):529–538. doi:10.4141/cjss95-075.
  • Fang Y, Singh BP, Collins D, Li B, Zhu J, Tavakkoli E. 2018. Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biol Biochem. 126:168–178. doi:10.1016/j.soilbio.2018.09.003.
  • FAO. 2018. Basic principles of conservation agriculture. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/.
  • Ferreira DF. 2014. Sisvar: a guide for its bootstrap procedures in multiple comparisons. Cienc. Agrotec. 38(2):109–112. doi:10.1590/S1413-70542014000200001.
  • Ferreira RV, Tavares RLM, Medeiros SFD, Silva AGD, Silva Júnior JFD. 2020. Carbon stock and organic fractions in soil under monoculture and Sorghum bicolor–Urochloa ruziziensis intercropping systems. Bragantia. 79(3):425–433. doi:10.1590/1678-4499.20200042.
  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. 2009. Global patterns in belowground communities. Ecol Lett. 12(11):1238–1249. doi:10.1111/j.1461-0248.2009.01360.x.
  • Frasier I, Noellemeyer E, Figuerola E, Erijman L, Permingeat H, Quiroga A. 2016. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Glob Ecol Conserv. 6:242–256. doi:10.1016/j.gecco.2016.03.009.
  • Gazolla PR, Guareschi RF, Perin A, Pereira MG, Rossi CQ. 2015. Soil organic matter fractions under pasture, no-till and integrated crop-livestock systems. Semin Cienc Agrar. 36(2):693–704. doi:10.5433/1679-0359.2015v36n2p693.
  • Hartman WH, Richardson CJ. 2013. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? PLoS One. 8(3):e57127. doi:10.1371/journal.pone.0057127.
  • Hurisso TT, Davis JG, Brummer JE, Stromberger ME, Mikha MM, Haddix ML, Paul EA, Paul EA. 2013. Rapid changes in microbial biomass and aggregate size distribution in response to changes in organic matter management in grass pasture. Geoderma. 193:68–75. doi:10.1016/j.geoderma.2012.10.016.
  • Insam H, Domsch KH. 1988. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol. 15(2):177–188. doi:10.1007/BF02011711.
  • Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein B, Bezemer TM, Bonin C, Bruelheide H, Luca E, et al. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature. 526(7574):574–577. doi:10.1038/nature15374
  • Kallenbach C, Grandy AS. 2011. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agric Ecosyst Environ. 144(1):241–252. doi:10.1016/j.agee.2011.08.020.
  • Laroca JVDS, Souza JMAD, Pires GC, Pires GJC, Pacheco LP, Silva FDD, Wruck FJ, Carneiro MAC, Silva LS, Souza EDD, et al. 2018. Soil quality and soybean productivity in crop-livestock integrated system in no-tillage. Pesqui. Agropecu. Bras. 53(11):1248–1258. doi:10.1590/s0100-204x2018001100007.
  • Laureto LMO, Cianciaruso MV, Samia DSM. 2015. Functional diversity: an overview of its history and applicability. Nat Conserv. 13(2):112–116. doi:10.1016/j.ncon.2015.11.001.
  • Liu Z, Liu J, Yu Z, Yao Q, Li Y, Liang A, Wang G, Mi G, Jin J, Liu X. 2020. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Till Res. 197:104503. doi:10.1016/j.still.2019.104503.
  • Masvaya EN, Nymangara J, Descheemaeker K, Giller KE. 2017. Tillage, mulch and fertiliser impacts on soil nitrogen availability and maize production in semi-arid Zimbabwe. Soil Till Res. 168:124–132. doi:10.1016/j.still.2016.12.007.
  • Mateus GP, Crusciol CAC, Pariz CM, Costa NR, Borghi E, Costa C, Martello JM, Castilhos AM, Franzluebbers AJ, Cantarella H. 2020. Corn intercropped with tropical perennial grasses as affected by sidedress nitrogen application rates. Nutr. Cycl. Agroecosystems. 116(2):223–244. doi:10.1007/s10705-019-10040-1.
  • McDaniel MD, Tiemann LK, Grandy AS. 2014. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? a meta-analysis. Ecol Appl, 24:560e570.
  • Mendes IC, Fernandes MF, Chaer GM, Reis Junior FB. 2012. Biological functioning of brazilian cerrado soils under different vegetation types. Plant Soil. 359(1–2):183–195. doi:10.1007/s11104-012-1195-6.
  • Mendes IC, Sousa DMG, Reis Junior FB. 2015. Bioindicators of soil quality: from research labs to the field. Cad Cienc Tec. 32:191.
  • Muniz M, Costa KAP, Severiano EC, Bilego UO, Almeida DP, Neto AEF, Vilela L, Lana MA, Leandro WM, Dias MBC. 2021. Soybean yield in integrated crop–livestock system in comparison to soybean–maize succession system. J Agric Sci. 1–11.
  • Nascente AS, Stone LF. 2018. Cover crops as affecting soil chemical and physical properties and development of upland rice and soybean cultivated in rotation. Rice Sci. 25(6):340–349. doi:10.1016/j.rsci.2018.10.004.
  • Oliveira M, Barré P, Trindade H, Virto I. 2019. Different efficiencies of grain legumes in crop rotations to improve soil aggregation and organic carbon in the short-term in a sandy Cambisol. Soil Till Res. 186:23–35. doi:10.1016/j.still.2018.10.003.
  • Pacheco LP, Miguel ASDCS, Silva RGD, Souza EDD, Petter FA, Kappes C. 2017. Biomass yield in production systems of soybean sown in succession to annual crops and cover crops. Pesqui. Agropecu. Bras. 52(8):582–591. doi:10.1590/s0100-204x2017000800003.
  • Raphael JPA, Calonego JC, Milori DMBP, Rosolem CA. 2016. Soil organic matter in crop rotations under no-till. Soil Till Res. 155:45–53. doi:10.1016/j.still.2015.07.020.
  • Reis JC, Kamoi MY, Latorraca D, Chen RF, Michetti M, Wruck FJ, Rodrigues-Filho S, Valentim JF, Rodrigues RDAR, Rodrigues-Filho S. 2020. Assessing the economic viability of integrated crop−livestock systems in Mato Grosso, Brazil. Renew Agric Food Syst. 35(6):631–642. doi:10.1017/S1742170519000280.
  • Reis JC, Rodrigues GS, Barros I, Rodrigues RDAR, Garrett RD, Valentim JF, Smukler S, Michetti M, Wruck FJ, Rodrigues-Filho S. 2021. Integrated crop-livestock systems: a sustainable land-use alternative for food production in the Brazilian Cerrado and Amazon. J Clean Prod. 283:124580. doi:10.1016/j.jclepro.2020.124580.
  • Rocha KF, Souza M, Almeida DS, Chadwick DR, Jones DL, Mooney SJ, Rosolem CA. 2020. Cover crops affect the partial nitrogen balance in a maize forage cropping system. Geoderma. 360:114000. doi:10.1016/j.geoderma.2019.114000.
  • Rosset SJ, Lana MC, Pereira MG, Schiavo JA, Marcos LR, Sarto VM. 2016. Chemical and oxidizable fractions of soil organic matter under different management systems in a red latosol. Pesqui. Agropecu. Bras. 51:9.
  • Salton JC, Mercante FM, Tomazi M, Zanatta JA, Concenço G, Silva WM, Retore M. 2014. Integrated crop-livestock system in tropical Brazil: toward a sustainable production system. Agric Ecosyst Environ. 190:70–79. doi:10.1016/j.agee.2013.09.023.
  • Sant-Anna SA, Jantalia CP, Sa JM, Vilela L, Marchao RL, Alves BJ, Boddey RM, Boddey RM. 2017. Changes in soil organic carbon during 22 years of pastures, cropping or integrated crop/livestock systems in the Brazilian Cerrado. Nutr Cycling Agroecosyst. 108(1):101–120. doi:10.1007/s10705-016-9812-z.
  • Sarto M, Borges WLB, Sarto RW, Pires CAB, Rice CW, Rosolem CA. 2020. Soil microbial community and activity in a tropical integrated crop-livestock system. Appl Soil Ecol. 145:103350. doi:10.1016/j.apsoil.2019.08.012.
  • Silva LS, Laroca JV, Coelho AP, Gonçalves EC, Gomes RP, Pacheco LP, Systems CL, Pires GC, Oliveira RL, Souza JMAD. 2022. Does grass-legume intercropping change soil quality and grain yield in integrated crop-livestock systems? Appl Soil Ecol. 170:104257. doi:10.1016/j.apsoil.2021.104257.
  • Silva RRD, Silva MLN, Cardoso EL, Moreira FMDS, Curi N, Alovisi AMT. 2010. Biomass and microbial activity in soil under different management systems in the physiographic region Campos das vertentes-MG. Rev. Bras. Cienc. Solo. 34(5):1584–1592. doi:10.1590/S0100-06832010000500011.
  • Silva PCG, Tiritan CS, Echer FR, Cordeiro CFS, Rebonatti MD, Santos CH. 2020. No-tillage and crop rotation increase crop yields and nitrogen stocks in sandy soils under agroclimatic risk. Field Crops Res. 258:1–9. doi:10.1016/j.fcr.2020.107947.
  • Souza ED, Costa SERVGA, Anghinoni I, Lima CVS, Carvalho PCF, Martins AP. 2010. Soil microbial biomass in a no-till integrated crop-livestock system subjected to grazing intensities. Rev Bras Cien Solo. 34(1):79–88. doi:10.1590/S0100-06832010000100008.
  • Sparling GP, West AW. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labeled sells. Soil Biol Biochem. 20(3):337–343. doi:10.1016/0038-0717(88)90014-4.
  • Spohn M. 2015. Microbial respiration per unit microbial biomass depends on litter layer carbon-to-nitrogen ratio. Biogeosciences. 12(3):817–823. doi:10.5194/bg-12-817-2015.
  • Staff SS. 2014. Keys to Soil Taxonomy. 12th edition ed. Washington (D.C): U.S. Department of Agriculture, Natural Resources Conservation Service.
  • Steward PR, Dougill AJ, Thierfelder C, Pittelkow CM, Stringer LC, Kudzala M, Shackelford GE. 2018. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: a meta-regression of yields. Agric Ecosyst Environ. 251:194–202. doi:10.1016/j.agee.2017.09.019.
  • Su Y, Li Y, Zhao H. 2006. Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, Inner Mongolia, northern China. Biogeochemistry. 79(3):297–314. doi:10.1007/s10533-005-5273-1.
  • Tabatabai MA, Bremner JM. 1972. Assay of urease activity in soil. Soil Biol Biochem. 4(4):479–487. doi:10.1016/0038-0717(72)90064-8.
  • Tanaka RT, Mascarenhas HAA, Dias OS, Campidelli C, Bulisani EA. 1992. Soybean cultivation after incorporation of green and organic fertilizer. Pesqui. Agropecu. Bras. 27:1477–1483.
  • Tonucci RG, Garcia R, Nair PKR, Nair VD, Bernardino FS. 2011. Soil carbon storage in silvopasture and related land–use systems in the Brazilian Cerrado. J Environ Qual. 40(3):833–841. doi:10.2134/jeq2010.0162.
  • Turnbull LA, Isbell F, Purves DW, Loreau M, Hector A. 2016. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc R Soc B Biol Sci. 283(1844):20160536. doi:10.1098/rspb.2016.0536.
  • USDA. United States Department of Agriculture. 2020. World agricultural production. foreign agricultural service circular series. WAP 2-20. Available at: https://apps.fas.usda.gov/psdonline/circulars/production.pdf.
  • USDA. United States Department of Agriculture. 2021. World agricultural production. foreign agricultural service circular series. WAP 5-21. https://apps.fas.usda.gov/psdonline/circulars/production.pdf
  • Valani G Pereira, Vezzani F Machado and Cavalieri-Polizeli K Maria. (2020). Soil quality: Evaluation of on-farm assessments in relation to analytical index. Soil and Tillage Research, 198: 104565. doi: 10.1016/j.still.2019.104565.
  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass. Soil Biol Biochem. 19(6):703–707. doi:10.1016/0038-0717(87)90052-6.
  • Veloso MG, Dick DP, Costa JB, Bayer C. 2019. Cropping systems including legume cover crops favour mineral–organic associations enriched with microbial metabolites in no-till soil. Soil Res. 57(8):851–858. doi:10.1071/SR19144.
  • Weisser WW, Roscher C, Meyer ST, Ebeling A, Luo G, Allan E, Beßler H, Bernard RL, Buchmann N, Buscot F, et al. 2017. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic. Appl Ecol. 23:1–73.
  • Whitehead, DC. 2000. Nutrient elements in grassland: soil-plant-animal relationships.
  • Yost, JL, Hartemink, AE. 2019 Soil organic carbon in sandy soils: A review. Advances in Agronomy 158: 217–310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.