239
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effects of organic fertilization on phosphorus availability and crop growth: Evidence from a 7-year fertilization experiment

, , , , &
Pages 2092-2103 | Received 21 Mar 2022, Accepted 14 Oct 2022, Published online: 24 Oct 2022

References

  • Anderson BH, Magdoff FR. 2005. Relative movement and soil fixation of soluble organic and inorganic phosphorus. J Environ Qual. 34:2228–2233. doi:10.2134/jeq2005.0025.
  • Chakraborty D, Nair VD, Harris WG, Rhue RD. 2012. Environmentally relevant phosphorus retention capacity of sandy coastal plain soils. Soil Sci. 177:701–707. doi:10.1097/SS.0b013e31827d8685.
  • Chen C, Zhang JN, Lu M, Qin C, Chen YH, Yang L, Huang QW, Wang JC, Shen ZG, Shen QR. 2016a. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol Fert Soils. 52:455–467. doi:10.1007/s00374-016-1089-5.
  • Chen KY, Chen TY, Chan YT, Cheng CY, Tzou YM, Liu YT, Teah HY. 2016b. Stabilization of natural organic matter by short-range-order iron hydroxides. Environ Sci Technol. 50:12612–12620. doi:10.1021/acs.est.6b02793.
  • Chen MM, Zhang SR, Liu L, Liu JG, Ding XD. 2022. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant Soil. 1–17. doi:10.1007/s11104-022-05724-7.
  • Chen MM, Zhang SR, Liu L, Wu LP, Ding XD. 2021a. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Till Res. 212:105060. doi:10.1016/j.still.2021.105060.
  • Chen MM, Zhang SR, Wu LP, Fei C, Ding XD. 2021b. Organic fertilization improves the availability and adsorptive capacity of phosphorus in saline-alkaline soils. J Soil Sci Plant Nut. 21:487–496. doi:10.1007/s42729-020-00377-w.
  • Cordell D, Drangert J-O, White S. 2009. The story of phosphorus: global food security and food for thought. Global Environ Chang. 19(2):292–305. doi:10.1016/j.gloenvcha.2008.10.009.
  • Dou Z, Ramberg CF, Toth JD, Wang Y, Sharpley AN, Boyd SE, Chen CR, Williams D, Xu ZH. 2009. Phosphorus speciation and sorption-desorption characteristics in heavily manured soils. Soil Sci Soc Am J. 73:93–101. doi:10.2136/sssaj2007.0416.
  • Du Y, Cui B, zhang Q, Wang Z, Sun J, Niu W. 2020. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis. CATENA. 193:104617. doi:10.1016/j.catena.2020.104617.
  • Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L. 2012. Soil salinity development in the Yellow River delta in relation to groundwater dynamics. Land Degrad Dev. 23:175–189. doi:10.1002/ldr.1071.
  • Fang L, Li JS, Guo MZ, Cheeseman CR, Tsang DCW, Donatello S, Poon CS. 2018. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere. 193:278–287. doi:10.1016/j.chemosphere.2017.11.023.
  • Fei C, Zhang SR, Wei WL, Liang B, Li JL, Ding XD. 2020. Straw and optimized nitrogen fertilizer decreases phosphorus leaching risks in a long-term greenhouse soil. J Soil Sediment. 20:1199–1207. doi:10.1007/s11368-019-02483-4.
  • Hedley MJ, Stewart JWB, Chauhan BS. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J. 46:970–976. doi:10.2136/sssaj1982.03615995004600050017x.
  • Jiang PK, Xu QF, Xu ZH, Cao ZH. 2006. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. For Ecol Manag. 236:30–36. doi:10.1016/j.foreco.2006.06.010.
  • Jiang YH, Zhang SR, Wei RX, Ding XD. 2022. Microbial community changes during anaerobic nitrate reduction and Fe (II) oxidation of a coastal saline paddy soil under alkaline pH. J Soil Sediment. 1–11.
  • Kang J, Amoozegar A, Hesterberg D, Osmond DL. 2011. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma. 161:194–201. doi:10.1016/j.geoderma.2010.12.019.
  • Koch M, Kruse J, Eichler-Lobermann B, Zimmer D, Willbold S, Leinweber P, Siebers N. 2018. Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: evidence from sequential fractionation, P K-edge XANES, and P-31 NMR spectroscopy. Geoderma. 316:115–126. doi:10.1016/j.geoderma.2017.12.003.
  • Kozyatnyk I, Bouchet S, Bjorn E, Haglund P. 2016. Fractionation and size-distribution of metal and metalloid contaminants in a polluted groundwater rich in dissolved organic matter. J Hazard Mater. 318:194–202. doi:10.1016/j.jhazmat.2016.07.024.
  • Li RL, Zhang SR, Zhang M, Fei C, Ding XD. 2021. Phosphorus fractions and adsorption–desorption in aggregates in coastal saline-alkaline paddy soil with organic fertilizer application. J Soil Sediment. 21(9):3084–3097. doi:10.1007/s11368-021-02999-8.
  • Liu DM, Zhang SR, Fei C, Ding XD. 2021a. Impacts of straw returning and n application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils. Appl Soil Ecol. 168(18):104115. doi:10.1016/j.apsoil.2021.104115.
  • Liu L, Zhang SR, Chen MM, Cui DJ, Ding X. 2021b. Organic amendment increases wheat yield by improving soil N transformations and reducing N loss in North China Plain. Arch Agron Soil Sci. 1–14. doi:10.1080/03650340.2021.1946682.
  • Liu XP, Bi QF, Qiu LL, Li KJ, Yang XR, Lin XY. 2019. Increased risk of phosphorus and metal leaching from paddy soils after excessive manure application: insights from a mesocosm study. Sci Total Environ. 666:778–785. doi:10.1016/j.scitotenv.2019.02.072.
  • Ma L, Velthof GL, Wang FH, Qin W, Zhang WF, Liu Z, Zhang Y, Wei J, Lesschen JP, Ma WQ, et al. 2012. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Sci Total Environ. 434:51–61. doi:10.1016/j.scitotenv.2012.03.028.
  • Mao W, Kang S, Wan Y, Sun Y, Li X, Wang Y. 2016. Yellow river sediment as a soil amendment for amelioration of saline land in the yellow river delta. Land Degrad Dev. 27(6):1595–1602. doi:10.1002/ldr.2323.
  • McKeague JA, Day JH. 1966. Dithionite and oxalate Fe and Al as aids in differentiating various classes of soils. Can J Soil Sci. 46:13–22. doi:10.4141/cjss66-003.
  • Mohanty S, Paikaray NK, Rajan AR. 2006. Availability and uptake of phosphorus from organic manures in groundnut (Arachis hypogea L.)-corn (Zea mays L.) sequence using radio tracer technique. Geoderma. 133:225–230. doi:10.1016/j.geoderma.2005.07.009.
  • Nair V, Harris Wjnzjo AR. 2004. A capacity factor as an alternative to soil test phosphorus in phosphorus risk assessment. New Zeal J Agr Res. 47:491–497. doi:10.1080/00288233.2004.9513616.
  • Nair VD. 2014. Soil phosphorus saturation ratio for risk assessment in land use systems. Front in Env Sci. 2:6. doi:10.3389/fenvs.2014.00006.
  • Nair VD, Harris WG. 2010. A capacity factor as an alternative to soil test phosphorus in phosphorus risk assessment. New Zeal J Agr Res. 47:491–497.
  • Qin X, Guo S, Zhai L, Pan J, Khoshnevisan B, Wu S, Wang H, Yang B, Ji J, Liu H. 2020. How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil. Environ Pollut. 266:115304. doi:10.1016/j.envpol.2020.115304.
  • Schelde K, de Jonge LW, Kjaergaard C, Laegdsmand M, Rubaek GH. 2006. Effects of manure application and plowing on transport of colloids and phosphorus to tile drains. Vadose Zone Journal. 5:445–458. doi:10.2136/vzj2005.0051.
  • Schmieder F, Bergstrom L, Riddle M, Gustafsson JP, Klysubun W, Zehetner F, Condron L, Kirchmann H. 2018. Phosphorus speciation in a long-term manure-amended soil profile - Evidence from wet chemical extraction, P-31-NMR and P K-edge XANES spectroscopy. Geoderma. 322:19–27. doi:10.1016/j.geoderma.2018.01.026.
  • Sharpley A, Moyer B. 2000. Phosphorus forms in manure and compost and their release during simulated rainfall. J Environ Qual. 29:1462–1469. doi:10.2134/jeq2000.00472425002900050012x.
  • Sui YB, Thompson ML, Shang C. 1999. Fractionation of phosphorus in a mollisol amended with biosolids. Soil Sci Soc Am J. 63:1174–1180. doi:10.2136/sssaj1999.6351174x.
  • Tian K, Zhao YC, Xu XH, Hai N, Huang BA, Deng WJ. 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric Ecosyst Environ. 204:40–50. doi:10.1016/j.agee.2015.02.008.
  • Tunesi S, Poggi V, Gessa Cjnci A. 1999. Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutr Cycl Agroecosys. 53:219–227. doi:10.1023/A:1009709005147.
  • Weihrauch C. 2019. Dynamics need space - A geospatial approach to soil phosphorus’ reactions and migration. Geoderma. 354:113775. doi:10.1016/j.geoderma.2019.05.025.
  • Wong VN, Greene R, Dalal RC, Murphy BWJSu, management. 2010. Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manag. 26:2–11. doi:10.1111/j.1475-2743.2009.00251.x.
  • Wu L, Wei C, Zhang S, Wang Y, Kuzyakov Y, Ding X. 2019. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. J Clean Prod. 235:901–909. doi:10.1016/j.jclepro.2019.07.043.
  • Wu LP, Wang YD, Zhang SR, Wei WL, Kuzyakov Y, Ding XD. 2021. Fertilization effects on microbial community composition and aggregate formation in saline-alkaline soil. Plant Soil. 63:523–535. doi:10.1007/s11104-021-04909-w.
  • Wu LP, Zhang SR, Wang J, Ding XD. 2020. Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: adsorption, column and field tests. Environ Pollut. 261:114223. doi:10.1016/j.envpol.2020.114223.
  • Yan ZJ, Chen S, Li JL, Alva A, Chen Q. 2016. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses. J Environ Manag. 181:26–35. doi:10.1016/j.jenvman.2016.05.081.
  • Yang Y, Zhang H, Qian X, Duan J, Wang G. 2017. Excessive application of pig manure increases the risk of P loss in calcic cinnamon soil in China. Sci Total Environ. 609:102–108. doi:10.1016/j.scitotenv.2017.07.149.
  • Zhang Q, Song Y, Wu Z, Yan X, Gunina A, Kuzyakov Y, Xiong Z. 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J Clean Prod. 242:118435. doi:10.1016/j.jclepro.2019.118435.
  • Zhang T, Page T, Heathwaite L, Beven K, Oliver DM, Haygarth PM. 2013. Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. Soil Use Manag. 29:187–198. doi:10.1111/j.1475-2743.2012.00433.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.