148
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of bare and CMC-coated Fe oxide nanoparticles on microbial activity and immobilising zinc, lead, and cadmium in a contaminated soil

, , , &
Pages 2104-2120 | Received 01 May 2022, Accepted 16 Oct 2022, Published online: 25 Oct 2022

References

  • Abdollahi S, Golchin A, Shahryari F, Alamdari P. 2020. PGPR inoculation of a contaminated soil affects plant growth and phytoavailability of Cd and Pb. Arch Agron Soil Sci. 68(5):579–596.
  • Akhavan A, Golchin A. 2021. Estimation of arsenic leaching from Zn–Pb mine tailings under environmental conditions. J Clean Prod. 295:126477. doi:10.1016/j.jclepro.2021.126477.
  • Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem Article. ID:6730305.
  • Anderson JPE. 1982. Soil respiration. In: methods of soil analysis, Part 2: chemical and microbiological properties. In:: Page AL, Miller RH, Keeney DR, editors. Agronomy 9/2. 2nd edn ed. Madison (Wl): American Society of Agronomy; p. 831–871.
  • Assi MA, Hezmee MN, Haron AW, Sabri MY, Rajion MA. 2016. The detrimental effects of lead on human and animal health. Vet World. 9(6):660–671. doi:10.14202/vetworld.2016.660-671.
  • Barcelos D, Pontes F, Silva F, Castro D, Anjos N, Castilho Z. 2020. Gold mining tailing: environmental availability of metals and human health risk assessment. J Hazard Mater. 397:122721. doi:10.1016/j.jhazmat.2020.122721.
  • Bashir F, Tariq M, Khan MH, Khan RA, Aslam S. 2014. Fractionation of heavy metals and their uptake by vegetables growing in soils irrigated with sewage effluent. Turkish J Eng Environ Sci. 38:1–10. doi:10.3906/muh-1309-21.
  • Bernard A. 2008. Cadmium and its adverse effects on humans. Indian J Medd Res. 128:557–564.
  • Bhateria R, Singh R. 2019. A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J Water Process Eng. 31:100845. doi:10.1016/j.jwpe.2019.100845.
  • Bidast S, Golchin A, Baybordi A, Zaman A, Naidu R. 2020. The effects of non-stabilised and Na-carboxymethylcellulose-stabilised iron oxide nanoparticles on remediation of Co-contaminated soils. Chemosphere. 261:128123. doi:10.1016/j.chemosphere.2020.128123.
  • Borggaard OK. 1983. The influence of iron oxides on phosphate adsorption by soil. J Soil Sci. 34(2):333–341. doi:10.1111/j.1365-2389.1983.tb01039.x.
  • Bower CA, Hatcher JT. 1966. Simultaneous determination surface area and cation exchange capacity. J Soil Sci Soc Am J. 30:527.
  • Bradl H. 2004. Adsorption of Heavy Metal Ions on Soils and Soils Constituents. J Colloid Interface Sci. 277(1):1–18. doi:10.1016/j.jcis.2004.04.005.
  • Charpentier TVJ, Neville A, Lanigan JL, Barker R, Smith MJ, Richardson T. 2016. Preparation of magnetic Carboxymethyl chitosan nanoparticles for adsorption of heavy metal ions. ACS Omega. 1(1):77–83. doi:10.1021/acsomega.6b00035.
  • Chiroma TM, Ebewele RO, Hymore FK. 2014. Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int Refer J Eng Sci (Irjes). 3(2):01–09.
  • Cornell RM, Schwertmann U. 1996. The iron oxides: structures, properties, reactions, occurrence, and uses. 2nd ed. New York: Wiley-VCH, Weinheim; p. 573.
  • Debnath B, Singh W, Manna K. 2019. Sources and toxicological effects of lead on human health. Indian J Med Spec. 10(2):66–71. doi:10.4103/INJMS.INJMS_30_18.
  • Fato PF, Li D-W, Zhao L-J, Qiu K, Long Y-T. 2019. Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega. 4(4):7543–7549. doi:10.1021/acsomega.9b00731.
  • Flora G, Gupta D, Tiwari A. 2012. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 5(2):47–58. doi:10.2478/v10102-012-0009-2.
  • Gee GW, Bauder JW. 1986. Particle size analysis. In: Klute A, editor. Methods of Soil Analysis. Madison: ASA. SSSA; p. 383–409.
  • Giraldo L, Erto A, Moreno-Piraján JC. 2013. Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption. 19(2–4):465–474. doi:10.1007/s10450-012-9468-1.
  • Gong Y, Liu Y, Xiong Z, Kaback D, Zhao D. 2012. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology. 23(29):294007. doi:10.1088/0957-4484/23/29/294007.
  • Hafez H, Yousef H. 2012. A study on the use of nano/micro structured goethite and hematite as adsorbents for the removal of Cr (III), Co (II), Cu (II), Ni (II), and Zn (II) metal ions from aqueous solutions. Int J Engin Sci Technol. 4(6):3018–3028.
  • Hankin L, Anagnostakis SL. 1977. Solid media containing carboxymethylcellulose to Detect Cx cellulase activity of micro-organisms. J Gen Microbiol. 98(1):109–115. doi:10.1099/00221287-98-1-109.
  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L. 2016. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere. 147:195–202. doi:10.1016/j.chemosphere.2015.12.055.
  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X. 2011. The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments. 11(8):1408–1417. doi:10.1007/s11368-011-0415-7.
  • He F, Zhao D, Liu J, Roberts CB. 2007. Stabilization of Fe−Pd Nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res. 46(1):29–34. doi:10.1021/ie0610896.
  • Houben D, Pircar J, Sonnet P. 2012. Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor. 123:87–94. doi:10.1016/j.gexplo.2011.10.004.
  • Jain Y, Kuntail J, Mukherjee AK, Sinha I. 2019. Computational insight into the mechanism of arsenous acid adsorption on magnetite (311) surface. Ind Eng Chem Res. 58(41):19197–19201. doi:10.1021/acs.iecr.9b03570.
  • Jain M, Yadav M, Kohout T, Lahtinen M, Garg VK, Sillanpää M. 2018. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour Ind. 20:57–74. doi:10.1016/j.wri.2018.10.001.
  • Jalali M, Khanlari ZV. 2007. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Arch Environ Contam Toxicol. 53(4):519–532. doi:10.1007/s00244-006-0252-7.
  • Jenkinson DS, Ladd JN. 1981. Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN, editors. Soil biochemistry. New York: Marcel Dekker, Inc; p. 415–471.
  • Kabata-Pendias A. 2010. Trace elements in soils and plants. 4th. Boca Raton: CRC Press, Taylor and Francis Group
  • Kambe T, Tsuji T, Hashimoto A, Itsumura N. 2015. The physiological, biochemical, and molecular roles of Zinc transporters in Zinc homeostasis and metabolism. Physiol Rev. 95(3):749–784. doi:10.1152/physrev.00035.2014.
  • Kamran M, Ali H, Saeed MF, Bakhat HF, Hassan Z, Tahir M, Abbas G, Naeem MA, Rashid MI, Shah GM. 2020. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicol Environ Saf. 205:111099. doi:10.1016/j.ecoenv.2020.111099.
  • Khan S, El-Latif Hesham A, Qiao M, Rehman S, He J-Z. 2010. Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res. 17(2):288–296. doi:10.1007/s11356-009-0134-4.
  • Kim DK, Mikhaylova M, Zhang Y, Muhammed M. 2003. Protective coating of superparamagnetic Iron Oxide Nanoparticles. Chem Mater. 15(8):1617–1627. doi:10.1021/cm021349j.
  • Kotoky P, Bora BJ, Baruah NK, Baruah J, Baruah P, Borah GC. 2003. Chemical fractionation of heavy metals in soils around oil installations. Assam Chem Spec Bioavailab. 15(4):115–126. doi:10.3184/095422903782775181.
  • Liang X, Wei G, Xiong J, Tan F, He H, Qu C, Yin H, Zhu J, Zhu R, Qin Z, et al. 2017. Adsorption isotherm, mechanism, and geometry of Pb(II) on magnetites substituted with transition metals. Chem Geol. 470(20):132–140. doi:10.1016/j.chemgeo.2017.09.003.
  • Liang Q, Zhao D, Qian T, Freeland K, Feng Y. 2012. Effects of stabilizers and water chemistry on arsenate sorption by polysaccharide-stabilized magnetite nanoparticles. Ind Eng Chem Res. 51(5):2407–2418. doi:10.1021/ie201801d.
  • Lindsay WL, Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Sci Soc Am J. 42(3):421–428. doi:10.2136/sssaj1978.03615995004200030009x.
  • Lin J, He F, Su B, Sun M, Owens G, Chen Z. 2019a. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J Hazaed Mater. 379:120832. doi:10.1016/j.jhazmat.2019.120832.
  • Lin J, Sun M, Su B, Owens G, Chen Z. 2019b. Immobilisation of cadmium in polluted soils by phytogenic iron oxide nanoparticles. Sci Total Environ. 659:491–498. doi:10.1016/j.scitotenv.2018.12.391.
  • Liu W, Tian S, Zhao X, Xie W, Gong Y, Zhao D. 2015. Application of stabilised nanoparticles for in situ remediation of metal-contaminated soil and groundwater: a critical review. Curr Pollut Rep. 1(4):280–291. doi:10.1007/s40726-015-0017-x.
  • Liu J, Zhu R, Xu T, Xu Y, Ge F, X Y, Zhu J, He H. 2016. Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite. Chemosphere. 144:1148–1155.
  • Li Y, Wang J, Pan F, Chapman SJ, Yao H. 2016. Soil nitrogen availability alters rhizodeposition carbon flux into the soil microbial community. J Soils Sediments. 16(5):1472–1480. doi:10.1007/s11368-015-1337-6.
  • Li X, Yang Z, Zhang C, Wei J, Zhang H, Li Z, Ma C, Wang M, Chen J, Hu J. 2019. Effects of different crystalline iron oxides on immobilisation and bioavailability of Cd in contaminated sediment. Chem Eng J. 373:307–317. doi:10.1016/j.cej.2019.05.015.
  • Lopez CG, Rogers SE, Colby RH, Graham P, Cabral JT. 2014. Structure of Sodium Carboxymethyl Cellulose Aqueous Solutions: a SANS and Rheology Study. J Polym Sci Polym Phys Ed. 53(7):492–501. doi:10.1002/polb.23657.
  • Lu C, Wu Y, Hu S, ZHANG X, Y FU. 2016. Distribution and transport of residual lead and copper along soil profiles in a mining region of North China. Pedosphere. 26(6):848–860. doi:10.1016/S1002-0160(15)60090-X.
  • Mansouri T, Golchin A, Neyestani MR. 2017. The effects of hematite nanoparticles on phytoavailability of arsenic and corn growth in contaminated soils. Int J Environ Sci Technol. 14(7):1525–1534. doi:10.1007/s13762-017-1267-5.
  • Manzoni S, Schimel JP, Porporato A. 2012. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 93(4):930–938. doi:10.1890/11-0026.1.
  • Ma J, Ullah S, Niu A, Liao Z, Qin Q, Xu S, Lin C. 2020. Heavy metal pollution increases CH4 and decreases CO2 emissions due to soil microbial changes in a mangrove wetland: Microcosm experiment and field examination. Chemosphere. 269:128735. doi:10.1016/j.chemosphere.2020.128735.
  • Miljkovic MV, Momcilovic M, Stankovic M, Cirkovic B, Laketic D, Nikolic G, Vujovic M. 2018. Remediation of arsenic contaminated water by a novel carboxymethyl cellulose bentonite adsorbent. Appl Ecol Environ Res. 17(1):733–744. doi:10.15666/aeer/1701_733744.
  • Mohamadiun M, Dahrazma B, Saghravani SF, Khodadadi-Darban A. 2018. Removal of cadmium from contaminated soil using iron (III) oxide nanoparticles stabilized with polyacrylic acid. J Environ Eng Landsc. 26(2):98–106. doi:10.3846/16486897.2017.1364645.
  • Nelson RE. 1982. Carbonate and gypsum. In: Page AL, editor. Methods of Soil Analysis. Part 2, second ed. Madison (WI): Chemical and Microbiological Properties. Agron Monogr. 9. SSSA and ASA; p. 181–197.
  • Noerpel MR, Lee SS, Lenhart JJ. 2016. X-ray analyses of lead adsorption on the (001), (110), and (012) hematite surfaces. Environ Sci Technol. 50(22):12283–12291. doi:10.1021/acs.est.6b03913.
  • Nordberg G, Bernard A, Diamond GL, Duffus JH, Illing P, Nordberg M, Bergdahl IA, Jin T, Skerfving S. 2018. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure Appl Chem. 90(4):755–808. doi:10.1515/pac-2016-0910.
  • Nwachukwu OI, Pulford ID. 2011. Microbial respiration as an indication of metal toxicity in contaminated organic materials and soil. J Hazard Mater. 185(2–3):1140–1147. doi:10.1016/j.jhazmat.2010.10.024.
  • Ostergren JD, Brown GE, Parks GA, Persson P. 2000. Inorganic ligand effects on Pb(II) sorption to goethite (α-FeOOH). II. Sulfate J Colloid Interface Sci. 225(15):483–493. doi:10.1006/jcis.1999.6702.
  • Pal S, Kumar S, Verma A, Kumar A, Ludwig T, Frank M, Mathur S, Prakash R, Sinha I. 2020b. Development of magnetically recyclable visible light photocatalysts for hydrogen peroxide production. Mater Sci Semicond Process. 112:105024. doi:10.1016/j.mssp.2020.105024.
  • Pal S, Singh P, Verma A, Kumar A, Tiwary D, Prakash R, Sinha I. 2020a. Visible light Photo-Fenton catalytic properties of starch functionalized iron oxyhydroxide nanocomposites. Environ Nanotechnol Monit Manag. 14:100311.
  • Pang Y, Zeng G, Tang L, Zhang Y, Liu Y, Lei X, Li Z, Zhang J, Liu Z, Xiong Y. 2011. Preparation and application of stability enhanced magnetic nanoparticles for rapid removal of Cr(VI). Chem Eng J. 175:222–227. doi:10.1016/j.cej.2011.09.098.
  • Pan J, Yu L. 2011. Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecol Eng. 37(11):1889–1894. doi:10.1016/j.ecoleng.2011.07.002.
  • Peng D, Wu B, Tan H, Hou S, Liu M, Tang H, Yu J, Xu H. 2019. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. Chemosphere. 228:44–53. doi:10.1016/j.chemosphere.2019.04.106.
  • Pereira RC, Anizelli PR, Di Mauro E, Valezi D, Costa A, Zaia C, Zaia D. 2019. The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite. Geochem Trans. 20(1):3. doi:10.1186/s12932-019-0063-1.
  • Pérez-López R, Álvarez-Valero AM, Nieto JM, Sáez R, Matos JX. 2008. Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São domingos mine (Iberian Pyrite Belt). Appl Geochem. 23(12):3452–3463. doi:10.1016/j.apgeochem.2008.08.005.
  • Qin P, Wang H, Yang X, He L, Muller K, Shaheen SM, Xu S, Rinklebe J, Tsang DC, Ok YS. 2018. Bamboo-and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils. Chemosphere. 198:450–459. doi:10.1016/j.chemosphere.2018.01.162.
  • Rajaie M, Karimian N, Maftoun M, Yasrebi J, Assad MT. 2006. Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time. Geoderma. 136(3–4):533–541. doi:10.1016/j.geoderma.2006.04.007.
  • Randall SR, Sherman DM, Ragnarsdottir KV, Collins CR. 1999. The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochim Cosmochim Acta. 63(19–20):2971–2987. doi:10.1016/S0016-7037(99)00263-X.
  • Rashid MI, Shahzad T, Shahid M, Imran M, Dhavamani J, Ismail MII, Basahi MJ, Almeelbi T. 2017. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep. 7(1):41965. doi:10.1038/srep41965.
  • Rhoades JD. 1996. Salinity: electrical conductivity and total dissolved solids. In: Sparks DL, editor. Methods of soil analysis part3: chemical methods. Madison: SSSA; p. 417–435.
  • Sall ML, Diaw AKD, Gningue-Sall D, Aaron SE, Aaro -J-J. 2020. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res. 27(24):29927–29942. doi:10.1007/s11356-020-09354-3.
  • Sanderson P, Naidu R, Bolan N. 2013. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils. Ecotoxicol Environ Saf. 100:201–208. doi:10.1016/j.ecoenv.2013.11.003.
  • Sarma GK, Sen Gupta S, Bhattacharyya KG. 2019. Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res. 26(7):6245–6278. doi:10.1007/s11356-018-04093-y.
  • Schwertmann U, Taylor RM. 1989. Minerals in soil environments. In: Dixon JB, Weed SB, editors. Iron oxides. Vol. 1, Madison, WI, USA: Soil Sci Soc Am. p. 379–438.
  • Ševců A, El-Temsah YS, Joner EJ, Černík M. 2011. Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ. 26(4):271–281. doi:10.1264/jsme2.ME11126.
  • Shi L, Guo Z, Peng C, Xiao X, Feng W, Huang B, Ran H. 2019. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: a four-season field experiment. Ecotoxicol Environ Saf. 171:425–434. doi:10.1016/j.ecoenv.2019.01.006.
  • Shi W, Ma X. 2017. Effects of heavy metal Cd pollution on microbial activities in soil. Ann Agric Environ Med. 24(4):722–725. doi:10.26444/aaem/80920.
  • Shi M, Min X, Ke Y, Lin Z, Yang Z, Wang S, Peng N, Yan X, Luo S, Wu J, et al. 2021. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Sci Total Environ. 752:141930. doi:10.1016/j.scitotenv.2020.141930.
  • Shukla M, Sinha I. 2018. Catalytic activation of nitrobenzene on PVP passivated silver cluster: a DFT investigation. Int J Quantum Chem. 118(3):3. e25490. doi:10.1002/qua.25490.
  • Singh B, Gräfe M, Kaur N, Liese A. 2010. Applications of synchrotron-based X-ray diffraction and X-ray absorption spectroscopy to the understanding of poorly crystalline and metal-substituted iron oxides. Developments in Soil Science. 34:199–254.
  • Singh PN, Tiwary D, Sinha I. 2015. Chromium removal from aqueous media by superparamagnetic starch functionalized maghemite nanoparticles. J Chem Sci. 127(11):1967–1976. doi:10.1007/s12039-015-0957-0.
  • Singh PN, Tiwary D, Sinha I. 2016. Starch-functionalized magnetite nanoparticles for hexavalent chromium removal from aqueous solutions, Desalin. Water Treat. 57(27):12608–12619. doi:10.1080/19443994.2015.1061453.
  • Sørensen MA 2001. Iron Oxides as a Stabilising Agent for Heavy Metals. Ph.D. Thesis, May 2001 Environment & Resources DTU, Technical University of Denmark.
  • Sposito G, Lund L, Chang A. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: i. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases 1. Soil Sci Soc Am J. 46(2):260–264. doi:10.2136/sssaj1982.03615995004600020009x.
  • Su B, Lin J, Owens G, Chen Z. 2020. Impact of green synthesized iron oxide nanoparticles on the distribution and transformation of as species in contaminated soil. Environ Pollut. 258:113668. doi:10.1016/j.envpol.2019.113668.
  • Tessier A, Campbell PG, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 51(7):844–851. doi:10.1021/ac50043a017.
  • Thomas GW. 1996. Soil pH and soil acidity. In: Sparks DL, editor. Methods of soil analysis part 3, chemical methods. Madison: SSSA; p. 475–490.
  • Trivedi P, Axe L, Dyer J. 2001. Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloids Surf A Physicochem Eng Asp. 191(1–2):107–121. doi:10.1016/S0927-7757(01)00768-3.
  • Truskewycz A, Patil S, Ball A, Shukla R. 2019. Iron Nanoparticles for contaminated site remediation and environmental preservation. In: Nanobiotechnology. 1st edition ed. Vol. 10, Boca Raton: CRC Press, Taylor and Francis Group; p. 325. doi:10.1201/9781351031585.
  • Valsecchi G, Gigliotti C, Farini A. 1995. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals. Biol Fertil Soils. 20(4):253–259. doi:10.1007/BF00336086.
  • Vázquez OFG, Moreno Virgen R, Montoya VH, Tovar R, Flores JLA, Perez-Cruz MA, Morán MAM. 2016. Adsorption of heavy metals in the presence of a magnetic field on adsorbents with different magnetic properties. Ind Eng Chem Res. 55:1–34.
  • Venema P, Hiemstra T, Riemsdijk WHV. 1996. Multisite adsorption of cadmium on goethite. J Colloid Interface Sci. 183(2):515–527. doi:10.1006/jcis.1996.0575.
  • Verma RK, Yadav DV, Singh CP, Suman A, Gaur A. 2010. Effect of heavy metals on soil respiration during decomposition of sugarcane (Saccharum officinarum L.) trash in different soils. Plant Soil Environ. 56(2):76–81. doi:10.17221/1773-PSE.
  • Vhahangwele M, Khathutshelo LM. 2018. Environmental contamination by heavy metals, heavy metals, hosam El-Din M. Saleh and Refaat F. Aglan, IntechOpen.
  • Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P. 2013. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem. 60:87–94. doi:10.1016/j.soilbio.2013.01.016.
  • Walkley A, Black IA. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi:10.1097/00010694-193401000-00003.
  • Wang F, Yao J, Si Y, Chen H, Russel M, Chen K, Qian Y, Zaray G, Bramanti E. 2010. Short-time effect of heavy metals upon microbial community activity. J Hazard Mater. 173(1–3):510–516. doi:10.1016/j.jhazmat.2009.08.114.
  • Zhou L, Thanh TL, Gong J, Kim J-H, Kim E-J, Chang Y-S. 2014. Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere. 104:155–161. doi:10.1016/j.chemosphere.2013.10.085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.