94
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Pullout properties of Hippophae rhamnoides L. roots in the loess area

ORCID Icon, , &
Pages 2170-2186 | Received 15 May 2022, Accepted 28 Oct 2022, Published online: 07 Nov 2022

References

  • Abernethy B, Rutherfurd ID. 2001. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol Process. 15(1):63–79. doi:10.1002/hyp.152.
  • Bademlioglu AH, Canbolat AS, Kaynakli O. 2020. Multi-objective optimization of parameters affecting organic rankine cycle performance characteristics with taguchi-grey relational analysis. Renewable Sustainable Energy Rev. 117:109483. doi:10.1016/j.rser.2019.109483.
  • Bischetti GB, Chiaradia EA, Simonato T, Speziali B, Vitali B, Vullo P, Zocco A. 2005. Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant Soil. 278(1):11–22. doi:10.1007/s11104-005-0605-4.
  • Burylo M, Rey F, Roumet C, Buisson E, Dutoit T. 2009. Linking plant morphological traits to uprooting resistance in eroded marly lands (Southern Alps, France). Plant Soil. 324(1):31–42. doi:10.1007/s11104-009-9920-5.
  • Chang JM, Wang GY, Hu SH, Zhang Y, Fu J, Zhou W. 2018. Experimental study on effects of geometric characteristics of shrub roots on pulling force. Bulletin of Soil and Water Conservation. 38(6):67–73. Chinese.
  • Chen X, Li GF, Hu W, Feng T, Zhao P. 2016. Exploration of the index characteristic of the tree roots-soil joint under vertical tension. Natural Science Journal of Hainan University. 34(4):363–369. Chinese.
  • Che CW, Xiao SC, Ding AJ, Peng XM, Su JR. 2022. Growth response of plantations Hippophae rhamnoides Linn. on different slope aspects and natural Caragana opulens Kom. to climate and implications for plantations management. Ecol Indic. 138:108833. doi:10.1016/j.ecolind.2022.108833.
  • Deng JL. 1990. The course of grey system theory. Wuhan: Huazhong University of Science and Technology Press.
  • Devkota BD, Omura H, Kubota T, Paudel P, Inoue S. 2006. Revegetation condition and morphological characteristics of grass species observed in landslide scars, Shintategawa watershed, Fukuoka, Japan. J Appl Sci. 6(10):2238–2244. doi:10.3923/jas.2006.2238.2244.
  • Ennos AR. 1990. The Anchorage of leek seedlings: the effect of root length and soil strength. Ann Bot. 65(4):409–416. doi:10.1093/oxfordjournals.aob.a087951.
  • Fan CC, Lu JZ, Chen HH. 2021. The pullout resistance of plant roots in the field at different soil water conditions and root geometries. Catena. 207:105593. doi:10.1016/j.catena.2021.105593.
  • Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail J-F, Beek RV. 2005. The influence of cellulose content on tensile strength in tree roots. Plant Soil. 278(1):1–9. doi:10.1007/s11104-005-8768-6.
  • Giadrossich F, Schwarz M, Cohen D, Cislaghi A, Vergani C, Hubble T, Phillips C, Stokes A. 2017. Methods to measure the mechanical behaviour of tree roots: a review. Ecol Eng. 109:256–271. doi:10.1016/j.ecoleng.2017.08.032.
  • Giadrossich F, Schwarz M, Cohen D, Preti F, Or D. 2013. Mechanical interactions between neighbouring roots during pullout tests. Plant Soil. 367(1):391–406. doi:10.1007/s11104-012-1475-1.
  • Hamzaçebi C, Pekkaya M. 2011. Determining of stock investments with grey relational analysis. Expert Syst Appl. 38(8):9186–9195. doi:10.1016/j.eswa.2011.01.070.
  • Heinäaho M, Pusenius J, Julkunen-Tiitto R. 2006. Effects of different organic farming methods on the concentration of phenolic compounds in sea buckthorn leaves. J Agric Food Chem. 54(20):7678–7685. doi:10.1021/jf061018h.
  • Helson O, Beaucour AL, Eslami J, Noumowe A, Gotteland P. 2017. Physical and mechanical properties of soilcrete mixtures: soil clay content and formulation parameters. Constr Build Mater. 131:775–783. doi:10.1016/j.conbuildmat.2016.11.021.
  • Hong DW 2019. Study on friction characteristics between roots of Pinus Tabuliformis and soil of the Loess Plateau of western Shanxi province [ master’s thesis]. Beijing: Beijing Forestry University.
  • Ji XD, Cong X, Dai XQ, Zhang A, Chen LH. 2018. Studying the mechanical properties of the soil-root interface using the pullout test method. J Mt Sci. 15(4):882–893. doi:10.1007/s11629-015-3791-4.
  • Ji JN, Mao Z, Qu WB, Zhang ZQ. 2019. Energy-based fibre bundle model algorithms to predict soil reinforcement by roots. Plant Soil. 446(1):307–329. doi:10.1007/s11104-019-04327-z.
  • Kamchoom V, Boldrin D, Leung AK, Sookkrajang C, Likitlersuang S. 2022a. Biomechanical properties of the growing and decaying roots of Cynodon dactylon. Plant Soil. 471(1):193–210. doi:10.1007/s11104-021-05207-1.
  • Kamchoom V, Leung AK, Boldrin D, Sakolpanya T, Wu Z, Likitlersuang S. 2022b. Shearing behaviour of vegetated soils with growing and decaying roots. Can Geotech. J.1–44.
  • Krisans O, Matisons R, Rust S, Burnevica N, Bruna L, Elferts D, Kalvane L, Jansons A. 2020. Presence of root rot reduces stability of norway spruce (Picea abies): results of static pulling tests in Latvia. Forests. 11(4):416–423. doi:10.3390/f11040416.
  • Leknoi U, Likitlersuang S. 2020. Good practice and lesson learned in promoting vetiver as solution for slope stabilisation and erosion control in Thailand. Land Use Pol. 99:105008. doi:10.1016/j.landusepol.2020.105008.
  • Leung F, Yan W, Hau B, Tham L. 2018. Mechanical pull-out capacity and root reinforcement of four native tree and shrub species on ecological rehabilitation of roadside slopes in Hong Kong. J Trop For Sci. 30(1):25–38.
  • Liang T, Bengough AG, Knappett JA, MuirWood D, Loades KW, Hallett PD, Boldrin D, Leung AK, Meijer GJ. 2017. Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecol Eng. 109:207–227. doi:10.1016/j.ecoleng.2017.06.067.
  • Likitlersuang S, Phan TN, Boldrin D, Leung AK. 2022. Influence of growth media on the biomechanical properties of the fibrous roots of two contrasting vetiver grass species. Ecol Eng. 178:106574. doi:10.1016/j.ecoleng.2022.106574.
  • Liu DL 2006. Research on balanced fertilization of Hippophae rhamnoides L.seedling in the semiqrid area of loess plateau [master’s thesis]. Xianyang: Northwest A&F University.
  • Liu XG 2013. Study on friction and anchorage characteristics between root system and soil [ master’s thesis]. Beijing: Beijing Forestry University.
  • Liu SS, Ji XD, Zhang X. 2022. Effects of soil properties and tree species on root–soil anchorage characteristics. Sustainability. 14(13):7770. doi:10.3390/su14137770.
  • Li YP, Wang YQ, Wang YJ, Ma C. 2017. Effects of Vitex negundo root properties on soil resistance caused by pull-out forces at different positions around the stem. Catena. 158:148–160. doi:10.1016/j.catena.2017.06.019.
  • Mu HL, Yu XJ, Fu SH, Yu BF, Liu YN, Zhang GH. 2019. Effect of stem basal cover on the sediment transport capacity of overland flows. Geoderma. 337:384–393. doi:10.1016/j.geoderma.2018.09.055.
  • O’Neill MA, York WS. 2018. The composition and structure of plant primary cell walls. Annu Plant Rev.1-54.
  • Ongpaporn P, Jotisankasa A, Likitlersuang S. 2022. Geotechnical investigation and stability analysis of bio-engineered slope at Surat Thani Province in Southern Thailand. Bull Eng Geol Environ. 81(3):1–16. doi:10.1007/s10064-022-02591-5.
  • Phan TN, Likitlersuang S, Kamchoom V, Leung AK. 2021. Root biomechanical properties of Chrysopogon zizanioides and Chrysopogon nemoralis for soil reinforcement and slope stabilisation. Land Degrad Dev. 32(16):4624–4636. doi:10.1002/ldr.4063.
  • Pimentel D. 2006. Soil Erosion: a Food and Environmental Threat. Environ Dev Sustain. 8(1):119–137. doi:10.1007/s10668-005-1262-8.
  • Pollen N. 2007. Temporal and spatial variability in root reinforcement of streambanks: accounting for soil shear strength and moisture. Catena. 69(3):197–205. doi:10.1016/j.catena.2006.05.004.
  • Sanchez Castillo L, Kosugi K, Masaoka N, Kubota T. 2019. Eco-morphological characteristics of fern species for slope conservation. J Mt Sci. 16(3):504–515. doi:10.1007/s11629-018-5106-z.
  • Sarraf F, Nejad SH. 2020. Improving performance evaluation based on balanced scorecard with grey relational analysis and data envelopment analysis approaches: case study in water and wastewater companies. Eval Program Plann. 79:101762. doi:10.1016/j.evalprogplan.2019.101762.
  • Schwarz M, Cohen D, Or D. 2010. Root‐soil mechanical interactions during pullout and failure of root bundles. J Geophys Res: Earth Surf. 115(F4).
  • Schwarz M, Cohen D, Or D. 2011. Pullout tests of root analogs and natural root bundles in soil: experiments and modeling. J Geophys Res: Earth Surf. 116(F2).
  • Stokes A, Ball J, Fitter A, Brain P, Coutts M. 1996. An experimental investigation of the resistance of model root systems to uprooting. Ann Bot. 78(4):415–421. doi:10.1006/anbo.1996.0137.
  • Stubbs CJ, Cook DD, Niklas KJ. 2019. A general review of the biomechanics of root Anchorage. J Exp Bot. 70(14):3439–3451. doi:10.1093/jxb/ery451.
  • Su LJ, Hu BL, Xie QJ, Yu FW, Zhang CL. 2020. Experimental and theoretical study of mechanical properties of root-soil interface for slope protection. J Mt Sci. 17(11):2784–2795. doi:10.1007/s11629-020-6077-4.
  • Tosi M. 2007. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphol. 87(4):268–283. doi:10.1016/j.geomorph.2006.09.019.
  • Wang X, Hong -M-M, Huang Z, Zhao Y-F, Ou Y-S, Jia H-X, Li J. 2019. Biomechanical properties of plant root systems and their ability to stabilize slopes in geohazard-prone regions. Soil Tillage Res. 189:148–157. doi:10.1016/j.still.2019.02.003.
  • Yang QH, Zhang CB, Liu PC, Jiang J. 2021. The role of root morphology and pulling direction in pullout resistance of alfalfa roots. Front Plant Sci. 12:580825. doi:10.3389/fpls.2021.580825.
  • Zhang CB, Chen LH, Jiang J. 2014. Why fine tree roots are stronger than thicker roots: the role of cellulose and lignin in relation to slope stability. Geomorphol. 206:196–202. doi:10.1016/j.geomorph.2013.09.024.
  • Zhang CB, Chen LH, Jiang J, Zhou S. 2012. Effects of gauge length and strain rate on the tensile strength of tree roots. Trees. 26(5):1577–1584. doi:10.1007/s00468-012-0732-5.
  • Zhang CB, Liu YT, Li DR, Jiang J. 2020a. Influence of soil moisture content on pullout properties of Hippophae rhamnoides Linn. roots. J Mt Sci. 17(11):2816–2826. doi:10.1007/s11629-020-6072-9.
  • Zhang CB, Liu YT, Liu PC, j J, Yang QH. 2020b. Untangling the influence of soil moisture on root pullout property of alfafa plant. J Arid Land. 12(4):666–675. doi:10.1007/s40333-020-0017-6.
  • Zhang CB, Zhou X, Jiang J, Yang W, Ma JJ, Hallett PD. 2019. Root moisture content influence on root tensile tests of herbaceous plants. Catena. 172:140–147. doi:10.1016/j.catena.2018.08.012.
  • Zheng LW, Liu XG, Tu ZH, Chen LH, Yu XX. 2014. Friction characteristics between roots of pinus tabuliformis and soil interface. J Soil Water Cons. 28(1):84–87. Chinese.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.