424
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Water-stable aggregates and aggregate-associated organic carbon after two years of biochar application

ORCID Icon, , , &
Pages 2218-2232 | Received 27 Mar 2022, Accepted 29 Oct 2022, Published online: 08 Nov 2022

References

  • Abiven S, Hund A, Martinsen V, Cornelissen G. 2015. Biochar amendment increases maize root surface areas and branching: a shovelomics study in Zambia. Plant Soil. 395(1–2):45–55. doi:10.1007/s11104-015-2533-2.
  • Ananyeva K, Wang W, Smucker AJM, Rivers ML, Kravchenko AN. 2013. Can intra–aggregate pore structures affect the aggregate’s effectiveness in protecting carbon? Soil Biol Biochem. 57:868–875. doi:10.1016/j.soilbio.2012.10.019.
  • Annabi M, Le Bissonnais Y, Le Villio-Poitrenaud M, Houot S. 2011. Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agr Ecosyst Environ. 144(1):382–389. doi:10.1016/j.agee.2011.07.005.
  • Atkinson CJ, Fitzgerald JD, Hipps NA. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 337(1–2):1–18. doi:10.1007/s11104-010-0464-5.
  • Ayoubi S, Karchegani PM, Mosaddeghi MR, Honarjoo N. 2012. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil Till Res. 121:18–26. doi:10.1016/j.still.2012.01.011.
  • Ayoubi S, Mirbagheri Z, Mosaddeghi MR. 2020. Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. Int Agrophys. 34(3):343–353. doi:10.31545/intagr/125620.
  • Baiano S, Morra L. 2017. Particulate and mineral-associated organic carbon in aggregates as affected by biowaste compost applications in a Mediterranean vegetables cropping system. Commun Soil Sci Plan. 48(4):383–394. doi:10.1080/00103624.2016.1269798.
  • Bai YX, Zhou YC. 2020. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China. Geoderma. 357:113938. doi:10.1016/j.geoderma.2019.113938.
  • Besalatpour AA, Ayoubi S, Hajabbasi MA, Mosaddeghi MR, Schulin R. 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena 111. 111:72–79. doi:10.1016/j.catena.2013.07.001.
  • Blagodatskaya Е, Kuzyakov Y. 2008. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fert Soils. 45(2):115–131. doi:10.1007/s00374-008-0334-y.
  • Blake GR, Hartge KH. 1986. Bulk density. In: Klute A, editor. Methods of soil analysis: part 1—physical and mineralogical methods. Madison (WI): ASA and SSSA; p. 363–375. SSSA Book Ser. 5.1.
  • Borchard N, Siemens J, Ladd B, Möller A, Amelung W. 2014. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Till Res. 144:184–194. doi:10.1016/j.still.2014.07.016.
  • Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K. 2001. Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol. 16(3):195–208. doi:10.1016/s0929-1393(00)00116-5.
  • Burrell LD, Zehetner F, Rampazzo N, Wimmer B, Soja G. 2016. Long-term effects of biochar on soil physical properties. Geoderma. 282:96–102. doi:10.1016/j.geoderma.2016.07.019.
  • Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma. 237:105–116. doi:10.1016/j.geoderma.2014.08.010.
  • Cao S, Zhou YZ, Zhou YY, Zhou X, Zhou WJ. 2021. Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. J Environ Manage. 293:112847. doi:10.1016/j.jenvman.2021.112847.
  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res. 45(8):629–634. doi:10.1071/sr07109.
  • Chung H, Ngo KJ, Plante AF, Six J. 2010. Evidence for carbon saturation in a highly structured and organic‐matter‐rich soil. Soil Sci Soc Am J. 74(1):130–138. doi:10.2136/sssaj2009.0097.
  • Du ZL, Zhao JK, Wang YD, Zhang QZ. 2017. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J Soil Sediment. 17(3):581–589. doi:10.1007/s11368-015-1349-2.
  • Elliott ET. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J. 50(3):627–633. doi:10.2136/sssaj1986.03615995005000030017x.
  • El-Naggar A, Lee SS, Rinklebe J, Farooq M, Song H, Sarmah AK, Zimmerman AR, Ahmad M, Shaheen SM, Ok YS. 2019. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma. 337:536–554. doi:10.1016/j.geoderma.2018.09.034.
  • Gao GL, Ding GD, Zhao YY, Wu B, Zhang YQ, Guo JB, Qin SG, Bao YF, Yu MH, Liu YD. 2016. Characterization of soil particle size distribution with a fractal model in the desertified regions of northern China. Acta Geophys. 64(1):1–14. doi:10.1515/acgeo-2015-0050.
  • Ghosh BN, Meena VS, Singh RJ, Alam NM, Patra S, Bhattacharyya R, Sharma NK, Dadhwal KS, Mishra PK. 2019. Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize–wheat rotation in the north-western Indian Himalayas. Ecol Indic. 105:415–424. doi:10.1016/j.ecolind.2018.02.050.
  • Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W. 2000. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem. 31(7–8):669–678. doi:10.1016/s0146-6380(00)00044-9.
  • Glaser B, Lehmann J, Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fert Soils. 35(4):219–230. doi:10.1007/s00374-002-0466-4.
  • Grunwald D, Kaiser M, Ludwig B. 2016. Effect of biochar and organic fertilizers on C mineralization and macro-aggregate dynamics under different incubation temperatures. Soil Till Res. 164:11–17. doi:10.1016/j.still.2016.01.002.
  • Hartley W, Riby P, Waterson J. 2016. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. J Environ Manage. 181:770–778. doi:10.1016/j.jenvman.2016.07.023.
  • Herath HMSK, Camps-Arbestain M, Hedley M. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma. 209:188–197. doi:10.1016/j.geoderma.2013.06.016.
  • Huang S, Sun YN, Zhang WJ. 2012. Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta-analysis. Clim Change. 112(3–4):847–858. doi:10.1007/s10584-011-0255-x.
  • Huang R, Tian D, Liu J, Lu S, He XH, Gao M. 2018. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agr Ecosyst Environ. 265:576–586. doi:10.1016/j.agee.2018.07.013.
  • Ippolito JA, Cui LQ, Kammann C, Wrage-Monnig N, Estavillo JM, Fuertes-Mendizabal T, Cayuela ML, Sigua G, Novak J, Spokas K, et al. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar. 2(4):421–438. doi:10.1007/s42773-020-00067-x.
  • Jin ZW, Zhang XL, Chen XM, Du ZJ, Ping LF, Han ZQ, Tao PC. 2021. Dynamics of soil organic carbon mineralization and enzyme activities after two months and six years of biochar addition. Biomass Convers Bior. accessed 2021 Feb 4. 10. doi:10.1007/s13399-021-01301-7.
  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, et al. 2010. An investigation into the reactions of biochar in soil. Aust J Soil Res. 48(6–7):501–515. doi:10.1071/sr10009.
  • Karchegani PM, Ayoubi S, Mosaddeghi MR, Honarjoo N. 2012. Soil organic carbon pools in particle-size fractions as affected by slope gradient and land use change in hilly regions, western Iran. J Mt Sci-Engl. 9(1):87–95. doi:10.1007/s11629-012-2211-2.
  • Lee MH, Chang EH, Lee CH, Chen JY, Jien SH. 2021. Effects of biochar on soil aggregation and distribution of organic carbon fractions in aggregates. Processes. 9(8):1431. doi:10.3390/pr9081431.
  • Lehmann J. 2007. Bio-energy in the black. Front Ecol Environ. 5(7):381–387. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
  • Lenka NK, Lal R. 2013. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Till Res. 126:78–89. doi:10.1016/j.still.2012.08.011.
  • Liu ZX, Chen XM, Jing Y, Li QX, Zhang JB, Huang QR. 2014b. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena. 123:45–51. doi:10.1016/j.catena.2014.07.005.
  • Liu XY, Ye YX, Liu YM, Zhang AF, Zhang XH, Li LQ, Pan GX, Kibue GW, Zheng JF, Zheng JW. 2014a. Sustainable biochar effects for low carbon crop production: a 5–crop season field experiment on a low fertility soil from Central China. Agr Syst. 129:22–29. doi:10.1016/j.agsy.2014.05.008.
  • Marmiroli M, Bonas U, Imperiale D, Lencioni G, Mussi F, Marmiroli N, Maestri E. 2018. Structural and functional features of chars from different biomasses as potential plant amendments. Front Plant Sci. 9:1119. doi:10.3389/fpls.2018.01119.
  • Ouyang L, Wang F, Tang J, Yu L, Zhang R. 2013. Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr. 13(4):991–1002. doi:10.4067/s0718-95162013005000078.
  • Peng X, Yan X, Zhou H, Zhang YZ, Sun H. 2015. Assessing the contributions of sesquioxides and soil organic matter to aggregation in an Ultisol under long-term fertilization. Soil Till Res. 146:89–98. doi:10.1016/j.still.2014.04.003.
  • Peng X, Ye LL, Wang CH, Zhou H, Sun B. 2011. Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Till Res. 112(2):159–166. doi:10.1016/j.still.2011.01.002.
  • Rahman MT, Guo ZC, Zhang ZB, Zhou H, Peng XH. 2018. Wetting and drying cycles improving aggregation and associated C stabilization differently after straw or biochar incorporated into a Vertisol. Soil Till Res. 175:28–36. doi:10.1016/j.still.2017.08.007.
  • Rahman F, Rahman MM, Gkmm R, Saleque MA, Atms H, Miah MG. 2016. Effect of organic and inorganic fertilizers and rice straw on carbon sequestration and soil fertility under a rice–rice cropping pattern. Carbon Manag. 7(1–2):41–53. doi:10.1080/17583004.2016.1166425.
  • Šimanský V, Igaz D, Horák J, Šurda P, Kolenčík M, Buchkina NP, Uzarowicz Ł, Juriga M, Šrank D, Pauková Ž. 2018. Response of soil organic carbon and water-stable aggregates to different biochar treatments including nitrogen fertilization. J Hydrol Hydromech. 66(4):429–436. doi:10.2478/johh-2018-0033.
  • Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res. 79(1):7–31. doi:10.1016/j.still.2004.03.008.
  • Six J, Elliott ET, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 32(14):2099–2103. doi:10.1016/s0038-0717(00)00179-6.
  • Soinne H, Hovi J, Tammeorg P, Turtola E. 2014. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma. 219:162–167. doi:10.1016/j.geoderma.2013.12.022.
  • Sun FF, Lu SG. 2014. Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil. J Plant Nutr Soil Sc. 177(1):26–33. doi:10.1002/jpln.201200639.
  • Tang FK, Cui M, Lu Q, Liu YG, Guo HY, Zhou JX. 2016. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region. Solid Earth. 7(1):141–151. doi:10.5194/se-7-141-2016.
  • Udom BE, Nuga BO, Adesodun JK. 2016. Water-stable aggregates and aggregate-associated organic carbon and nitrogen after three annual applications of poultry manure and spent mushroom wastes. Appl Soil Ecol. 101:5–10. doi:10.1016/j.apsoil.2016.01.007
  • Verchot LV, Dutaur L, Shepherd KD, Albrecht A. 2011. Organic matter stabilization in soil aggregates: understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma. 161(3–4):182–193. doi:10.1016/j.geoderma.2010.12.017.
  • Wang JY, Xiong ZQ, Kuzyakov Y. 2016. Biochar stability in soil: meta‐analysis of decomposition and priming effects. GCB Bioenergy. 8(3):512–523. doi:10.1111/gcbb.12266.
  • Yang Y, Sun K, Han LF, Chen YL, Liu J, Xing BS. 2022. Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biol Biochem. 169:108657. doi:10.1016/j.soilbio.2022.108657
  • Yang JH, Wang CL, Dai HL. 2008. Agricultural soil analysis and environmental monitoring. Beijing: China Land Press.
  • Zhang XL, Chen C, Chen XM, Tao PC, Jin ZW, Han ZQ. 2018. Persistent effects of biochar on soil organic carbon mineralization and resistant carbon pool in upland red soil, China. Environ Earth Sci. 77(5):177. doi:10.1007/s12665-018-7359-9.
  • Zhang FS, Chen XP, Duan BW. 2009. Guide to fertilization of major crops in China. Beijing: China Agricultural University Press.
  • Zhang M, Cheng G, Feng H, Sun BH, Zhao Y, Chen HX, Chen J, Dyck M, Wang XD, Zhang JG, et al. 2017. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ Sci Pollut R. 24(11):10108–10120. doi:10.1007/s11356-017-8505-8.
  • Zhang YR, Li Y, Liu YL, Huang XC, Zhang WA, Jiang TM. 2021. Responses of soil labile organic carbon and carbon management index to different long-term fertilization treatments in a typical yellow soil region. Eurasian Soil Sci. 54(4):605–618. doi:10.1134/s1064229321040189.
  • Zhang SL, Wang RJ, Yang XY, Sun BH, Li QH. 2016. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol. Sci Rep-UK. 6(1):39107. doi:10.1038/srep39107.
  • Zhang JJ, Wei YX, Liu JZ, Yuan JC, Liang Y, Ren J, Cai HG. 2019. Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol in Northeast China: a five–year field experiment. Soil Till Res. 190:1–9. doi:10.1016/j.still.2019.02.014.
  • Zhao RD, Coles N, Kong Z, Wu JP. 2015. Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil Till Res. 146:133–138. doi:10.1016/j.still.2014.10.014
  • Zheng HB, Liu WR, Zheng JY, Luo Y, Li RP, Wang H, Qi H, Liu J. 2018. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. Plos One. 13(6):e0199523. doi:10.1371/journal.pone.0199523.
  • Zimmerman AR, Gao B, Ahn MY. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem. 43(6):1169–1179. doi:10.1016/j.soilbio.2011.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.