138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Poly-γ-glutamic acid enhances the wheat yield, water use efficiency and soil physicochemical properties of the arid area in the Northwest China

, , ORCID Icon, , , & show all
Pages 2663-2676 | Received 18 Jun 2022, Accepted 16 Jan 2023, Published online: 08 Feb 2023

References

  • Abedi-Koupai J, Sohrab F, Swarbrick G. 2008. Evaluation of hydrogel application on soil water retention characteristics. J Plant Nutr. 31(2):317–331. doi:10.1080/01904160701853928.
  • Agbede TM, Oyewumi A. 2022. Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources Environ Sustain. 7:100051. doi:10.1016/j.resenv.2022.100051
  • Ashiuchi M, Kamei T, Misono H. 2003. Poly-γ-glutamate synthetase of Bacillus subtilis. J Mol Catalysis B: Enzymatic. 23(2–6):101–106. doi:10.1016/S1381-1177(03).
  • Bajaj I, Singhal R. 2011. Poly (glutamic acid) – an emerging biopolymer of commercial interest. Bioresour Technol. 102(10):5551–5561. doi:10.1016/j.biortech.2011.02.047.
  • Banedjschafie S, Durner W. 2015. Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality. J Plant Nutr Soil Sci. 178(5):798–806. doi:10.1002/jpln.201500128.
  • Bhattacharyya D, Hestekin JA, Brushaber P, Cullen L, Bachas LG, Sikdar SK. 1998. Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. J Membr Sci. 141(1):121–135. doi:10.1016/S0376-7388(97)00301-3.
  • Bittelli M, Campbell GS, Flury M. 1999. Characterization of particle-size distribution in soils with a fragmentation model. Soil Sci Soc Am J. 63(4):782–788. doi:10.2136/sssaj1999.634782x.
  • Castrignanò A, Stelluti M. 1999. Fractal geometry and geostatistics for describing the field variability of soil aggregation. J Agric Eng Res. 73(1):13–18. doi:10.1006/jaer.1998.0385.
  • Cesaro AD, Silva SBD, Silva VZD, Ayub MAZ. 2014. Physico-chemical and rheological characterization of poly-gamma-glutamic acid produced by a new strain of Bacillus subtilis. Eur Polym J. 57:91–98. doi:10.1016/j.eurpolymj.2014.04.017
  • Chen X, Chen SW, Yu ZN. 2008. Degradability of poly-γ-glutamic acid in environment. Environ Sci Technol. 31:35–37.
  • Chen L, Fei L, Mohamed KS, Liu L, Wang Z, Zhong Y, Dai Z. 2018. The effects of ploy (γ-glutamic acid) on spinach productivity and nitrogen use efficiency in North-West China. Plant, Soil Environ. 64(No. 11):517–522. doi:10.17221/371/2018-PSE.
  • Choudhary MI, Shalaby AA, Al‐Omran AM. 1995. Water holding capacity and evaporation of calcareous soils as affected by four synthetic polymers. Commun Soil Sci Plant Anal. 26(13–14):2205–2215. doi:10.1080/00103629509369440.
  • Dai H, Chen Y, Liu K, Zongxin L, Qian X, Zang H, Yang X, Zhao Y, Shen Y, Zhejin L, et al. 2019. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: a three-year field study. J Cleaner Prod. 212:393–400. doi:10.1016/j.jclepro.2018.12.013
  • Elliott ET. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J. 50(3):627–633. doi:10.2136/sssaj1986.03615995005000030017x.
  • Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, et al. 2014. World population stabilization unlikely this century. Science. 346(6206):234–237. doi:10.1126/science.1257469.
  • Ghorbani MA, Shamshirband S, Zare Haghi D, Azani A, Bonakdari H, Ebtehaj I. 2017. Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Till Res. 172:32–38. doi:10.1016/j.still.2017.04.009
  • Guo J, Shi W, Wen L, Shi X, Li J. 2020. Effects of a super-absorbent polymer derived from poly-γ-glutamic acid on water infiltration, field water capacity, soil evaporation, and soil water-stable aggregates. Arch Agron Soil Sci. 66(12):1627–1638. doi:10.1080/03650340.2019.1686137.
  • Inbaraj BS, Wang JS, Lu JF, Siao FY, Chen BH. 2009. Adsorption of toxic mercury (II) by an extracellular biopolymer poly (γ-glutamic acid). Bioresource Technol. 100(1):200–207. doi:10.1016/j.biortech.2008.05.014.
  • Jat HS, Datta A, Choudhary M, Yadav AK, Choudhary V, Sharma PC, Gathala MK, Jat ML, McDonald A. 2019. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil Till Res. 190:128–138. doi:10.1016/j.still.2019.03.005
  • Jia Z, Luo W, Xie J, Pan Y, Chen Y, Tang S, Liu W. 2011. Salinity dynamics of wetland ditches receiving drainage from irrigated agricultural land in arid and semi-arid regions. Agr Water Manage. 100(1):9–17. doi:10.1016/j.agwat.2011.08.026.
  • Jovanovic N, Israel S, Tredoux G, Soltau L, Le Maitre D, Rusinga F, Rozanov A, Van der Merwe N. 2012. Nitrogen dynamics in land cleared of alien vegetation (Acacia saligna) and impacts on groundwater at Riverlands Nature Reserve (Western Cape, South Africa). Water SA. 35(1):37–44. doi:10.4314/wsa.v35i1.76653.
  • Karlen D, Rice C. 2015. Soil Degradation: will Humankind Ever Learn? Sustainability. 7(9):12490–12501. doi:10.3390/su70912490.
  • Kemper WD, Chepil WS. 1965. Methods of Soil Analysis. Part 1 physical and mineralogical properties, including statistics of measurement and sampling. Size Distribution of Aggregation. 9:499–510.
  • Kirkham MB. 2014. Field capacity, wilting point, available water, and the non-limiting water range. In: Principles of soil and plant water relations. Burlington: Academic Press; p. 153–170.
  • Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability. 7(5):5875–5895. doi:10.3390/su7055875.
  • Liang J, Li Y, Si B, Wang Y, Chen X, Wang X, Chen H, Wang H, Zhang F, Bai Y, et al. 2021. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci Total Environ. 771:144802. doi:10.1016/j.scitotenv.2020.144802
  • Liang J, Shi W, He Z, Pang L, Zhang Y. 2019. Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China. Agr Water Manage. 218:48–59. doi:10.1016/j.agwat.2019.03.009
  • Li PP, Jiang Y, Wu C, Zhang WX, Han YL, Wang Q. 2016. Breeding of a γ-PGA-producing strain and the effect of its fermentation on sandy soil moisture retention. J Comput Theor Nanosci. 13(8):5305–5311. doi:10.1166/jctn.2016.5418.
  • Liu Z, Chen X, Jing Y, Li Q, Zhang J, Huang Q. 2014. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena. 123:45–51. doi:10.1016/j.catena.2014.07.005
  • Liu J, Schulz H, Brandl S, Miehtke H, Huwe B, Glaser B. 2012. Short‐term effect of biochar and compost on soil fertility and water status of a dystric cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci. 175(5):698–707. doi:10.1002/jpln.201100172.
  • Ma N, Zhang L, Zhang Y, Yang L, Yu C, Yin G, Doane TA, Wu Z, Zhu P, Ma X. 2016. Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application.Mao J, editor. PLoS ONE. 11(5):e0154091. doi:10.1371/journal.pone.0154091.
  • Nimmo JR, Perkins KS. 2002. Aggregate stability and size distribution. Methods of Soil Analysis: Part. 4:317–328.
  • Obia A, Cornelissen G, Martinsen V, Smebye AB, Mulder J. 2020. Conservation tillage and biochar improve soil water content and moderate soil temperature in a tropical Acrisol. Soil Till Res. 197:104521. doi:10.1016/j.still.2019.104521
  • Pańczuk-Figura I, Kołodyńska D. 2016. Biodegradable chelating agent for heavy metal ions removal. Sep Sci Technol. 51(15–16):2576–2585. doi:10.1080/01496395.2016.1210642.
  • Rizwan M, Rubina Gilani S, Iqbal Durani A, Naseem S. 2021. Materials diversity of hydrogel: synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res. 33:15–40. doi:10.1016/j.jare.2021.03.007
  • Roohi M, Saleem Arif M, Guillaume T, Yasmeen T, Riaz M, Shakoor A, Hassan Farooq T, Muhammad Shahzad S, Bragazza L. 2022. Role of fertilization regime on soil carbon sequestration and crop yield in a maize-cowpea intercropping system on low fertility soils. Geoderma. 428:116152. doi:10.1016/j.geoderma.2022.116152
  • Shi W, Liang J, Tao W, Tan S, Wang Q. 2015. γ-PGA additive decreasing soil water infiltration and improving water holding capacity. Nongye Gongcheng Xuebao. 31(23):94–100.
  • Six J, Elliott ET, Paustian K, Doran JW. 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J. 62(5):1367–1377. doi:10.2136/sssaj1998.03615995006200050032x.
  • Slatyer RO. 1967. Plant-water relationships. New York: Academic Press; p. 73–77.
  • Sung M-H, Park C, Kim C-J, Poo H, Soda K, Ashiuchi M. 2005. Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem Record. 5(6):352–366. doi:10.1002/tcr.20061.
  • Tarui Y, Iida H, Ono E, Miki W, Hirasawa E, Fujita K, Tanaka T, Taniguchi M. 2005. Biosynthesis of poly-γ-glutamic acid in plants: transient expression of poly-γ-glutamate synthetase complex in tobacco leaves. J Biosci Bioeng. 100(4):443–448. doi:10.1263/jbb.100.443.
  • Tisdall JM, Oades JM. 1982. Organic matter and water-stable aggregates in soils. J Soil Sci. 33(2):141–163. doi:10.1111/j.1365-2389.1982.tb01755.x.
  • Tyler SW, Wheatcraft SW. 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am J. 56(2):362–369. doi:10.2136/sssaj1992.03615995005600020005x.
  • Van Bavel CHM. 1950. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci Soc Am J. 14(C):20–23. doi:10.2136/sssaj1950.036159950014000C0005x.
  • Wall DH, Nielsen UN, Six J. 2015. Soil biodiversity and human health. Nature. 528(7580):69–76. doi:10.1038/nature15744.
  • Wang X, Qi J-Y, Zhang X-Z, Li -S-S, Latif Virk A, Zhao X, Xiao X-P, Zhang H-L. 2019. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil Till Res. 194:104339. doi:10.1016/j.still.2019.104339
  • Watson DJ. 1947. Comparative physiological studies in the growth of field crops. I: variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann Bot. 11(1):41–76. doi:10.1093/oxfordjournals.aob.a083148.
  • Wei B, Yang L. 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 94(2):99–107. doi:10.1016/j.microc.2009.09.014.
  • Wu CZ, Hong W. 1999. Study on fractal features of soil aggregate structure under different management patterns. Acta Pedologica Sinica. 36:167–177.
  • Xiao Q, Zhu L, Shen Y, Li S. 2016. Sensitivity of soil water retention and availability to biochar addition in rainfed semi-arid farmland during a three-year field experiment. Field Crop Res. 196:284–293. doi:10.1016/j.fcr.2016.07.014
  • Xu Z, Wan C, Xu X, Feng X, Xu H. 2013. Effect of poly (γ-glutamic acid) on wheat productivity, nitrogen use efficiency and soil microbes. J Soil Sci Plant Nutr. 13(3):744–755. doi:10.4067/S0718-95162013005000059.
  • Xu J, Xing Y, Wang J, Yang Y, Ye C, Sun R. 2023. Effect of poly-γ-glutamic acid on the phytoremediation of ramie (Boehmeria nivea L.) in the Hg-contaminated soil. Chemosphere. 312:137280. doi:10.1016/j.chemosphere.2022.137280
  • Xu S, Zhang L, McLaughlin NB, Mi J, Chen Q, Liu J. 2015. Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Till Res. 148:31–39. doi:10.1016/j.still.2014.10.002
  • Yang C, Liu N, Zhang Y. 2019. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma. 337:444–452. doi:10.1016/j.geoderma.2018.10.002
  • Yang X, Lu Y, Ding Y, Yin X, Raza S, Tong Y. 2017. Optimising nitrogen fertilisation: a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crop Res. 206:1–10. doi:10.1016/j.fcr.2017.02.016
  • Yin A, Jia Y, Qiu T, Gao M, Cheng S, Wang X, Sun Y. 2018. Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure. Appl Soil Ecol. 129:128–135. doi:10.1016/j.apsoil.2018.05.008
  • Zhang L, Gao D, Li J, Fang N, Wang L, Shi Y. 2017a. Effects of poly-γ-glutamic acid (γ-PGA) on soil nitrogen and carbon leaching and CO2 fluxes in a sandy clay loam soil. Can J Soil Sci. 97(2):319–328. doi:10.1139/CJSS-2016-0127.
  • Zhang L, Yang X, Gao D, Wang L, Li J, Wei Z, Shi Y, Hashimoto R, Otani H, Pazour GJ. 2017b. Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Sci Rep. 7(1):1–13. doi:10.1038/s41598-017-06248-2.
  • Zheng Z, Hoogenboom G, Cai H, Wang Z. 2020. Winter wheat production on the Guanzhong plain of Northwest China under projected future climate with SimCLIM. Agr Water Manage. 239:106233. doi:10.1016/j.agwat.2020.106233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.