140
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cowpea (Vigna unguiculata [L.] Walp.) plants display contrasting sulfur-mediated drought acclimation in greenhouse and field

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3550-3569 | Received 25 Mar 2023, Accepted 24 Aug 2023, Published online: 10 Sep 2023

References

  • Abdelaal KAA. 2015. Effect of salicylic acid and abscisic acid on morpho–physiological and anatomical characters of faba bean plants (Vicia faba L.) under drought stress. J Plant Prod. 6:1771–1788. doi:10.21608/JPP.2015.52096.
  • Andrade WL, Melo AS, Melo YL, Sá FVS, Rocha MM, Oliveira APS, Fernandes Júnior PI. 2021. Bradyrhizobium inoculation plus foliar application of salicylic acid mitigates water deficit effects on cowpea. J Plant Growth Regul. 40(2):656–667. doi: 10.1007/s00344-020-10130-3.
  • Anjum NA, Gill SS, Umar S, Ahmad I, Duarte AC, Pereira E. 2012. Improving growth and productivity of Oleiferous Brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms. Sci World J. 2012:657808. doi: 10.1100/2012/657808.
  • Astolfi S, Zuchi S. 2013. Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant. 35(1):175–181. doi: 10.1007/s11738-012-1060-5.
  • Balk J, Pilon M. 2011. Ancient and essential: the assembly of iron–sulfur clusters in plants. Trends Plant Sci. 16(4):218–226. doi: 10.1016/j.tplants.2010.12.006.
  • Bao AK, Wang YW, Xi JJ, Liu C, Zhang JL, Wang SM. 2014. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Funct Plant Biol. 41(2):203–214. doi: 10.1071/fp13106.
  • Battaglia ML, Lee C, Thomason W, Van Mullekom J. 2019. Effects of corn row width and defoliation timing and intensity on canopy light interception. Crop Sci. 59(4):1718–1731. doi: 10.2135/cropsci2018.05.0337.
  • Čatský J. 1960. Determination of water deficit in discus cut out from leaf blades. Biol Plant. 2(1):76–78. doi: 10.1007/BF02920701.
  • Chan KX, Phua SY, Van Breusegem F, Kopriva S. 2019. Secondary sulfur metabolism in cellular signalling and oxidative stress responses. J Exp Bot. 70(16):4237–4250. doi: 10.1093/jxb/erz119.
  • Chen D, Wang S, Yin L, Deng X. 2018. How does silicon mediate plant water uptake and loss under water deficiency? Front Plant Sci. 9:281. doi:10.3389/fpls.2018.00281.
  • Cohen I, Zandalinas SI, Huck C, Fritschi FB, Mittler R. 2021. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plant. 171(1):66–76. doi: 10.1111/ppl.13203.
  • [CONAB] Brazilian Supply Company. 2021. Monitoring of Brazilian grain harvest 2020/2021. 8th. Vol. 12, Twelfth survey. Brasília: CONAB.
  • Daryanto S, Wang L, Jacinthe PA. 2017. Global synthesis of drought effects on cereal, legume, tuber and root crops production: a review. Agric Water Manage. 179:18–33. doi:10.1016/j.agwat.2016.04.022.
  • Ebeed HT, Hassan NM, Aljarani AM. 2017. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol Biochem. 118:438–448. doi:10.1016/j.plaphy.2017.07.014.
  • [FAO] Food and Agriculture Organization of the United Nations. 2021. FAOSTAT database collections. http://www.fao.org/faostat
  • Fatma M, Asgher M, Masood A, Khan NA. 2014. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot. 107:55–63. doi:10.1016/j.envexpbot.2014.05.008.
  • Fatma M, Iqbal N, Gautam H, Sehar Z, Sofo A, D’Ippolito I, Khan NA. 2021. Ethylene and sulfur coordinately modulate the antioxidant system and ABA accumulation in mustard plants under salt stress. Plants. 10(1):180. doi: 10.3390/plants10010180.
  • Hafez EH, Abou E, Hassan WH, Gaafar IA, Seleiman MF. 2015. Effect of gypsum application and irrigation intervals on clay saline-sodic soil characterization, rice water use efficiency, growth, and yield. J Agric Sci. 7(12):208–219. doi: 10.5539/jas.v7n12p208.
  • Horn LN, Shimelis H. 2020. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in sub-Saharan Africa. Ann Agr Sci. 65(1):83–91. doi: 10.1016/j.aoas.2020.03.002.
  • Hussain SJ, Masood A, Anjum NA, Khan NA. 2019. Sulfur-mediated control of salinity impact on photosynthesis and growth in mungbean cultivars screened for salt tolerance involves glutathione and proline metabolism, and glucose sensitivity. Acta Physiol Plant. 41(8):1–13. doi: 10.1007/s11738-019-2926-6.
  • Jahan B, Rasheed F, Sehar Z, Fatma M, Iqbal N, Masood A, Khan NA. 2021. Coordinated role of nitric oxide, ethylene, nitrogen, and sulfur in plant salt stress tolerance. Stresses. 1(3):181–199. doi: 10.3390/stresses1030014.
  • Khan MIR, Asgher M, Khan NA. 2014. Alleviation of salt–induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata. L Plant Physiol Biochem. 80:67–74. doi:10.1016/j.plaphy.2014.03.026.
  • Kopriva S, Malagoli M, Takahashi H. 2019. Sulfur nutrition: impacts on plant development, metabolism, and stress responses. J Exp Bot. 70(16):4069–4073. doi: 10.1093/jxb/erz319.
  • Mantovani A. 1999. A method to improve leaf succulence quantification. Braz Arch Biol Technol. 42(1):9–14. doi: 10.1590/S1516-89131999000100002.
  • Miranda RS, Fonseca BSF, Pinho DS, Batista JYN, Brito RR, Silva EM, Ferreira WS, Costa JH, Lopes MS, Sousa RHB, et al. 2023. Selection of soybean and cowpea cultivars with superior performance under drought using growth and biochemical aspects. Plants. 12(17):3134. doi: 10.3390/plants12173134.
  • Miranda RS, Souza FIL, Alves AF, Souza RR, Mesquita RO, Ribeiro MID, Santana-Filho JA, Gomes-Filho E. 2021. Salt-acclimation physiological mechanisms at the vegetative stage of cowpea cultivars in soils from a semiarid region. J Soil Sci Plant Nutr. 21(4):3530–3543. doi: 10.1007/s42729-021-00625-7.
  • Murillo-Amador B, Troyo-Diéguez E, García-Hernández JL, López-Aguilar R, Ávila-Serrano NY, Zamora-Salgado S, Rueda-Puente EO, Kaya C. 2006. Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci Hortic (Amsterdam). 108(4):423–431. doi: 10.1016/j.scienta.2006.02.010.
  • Ndiso JB, Chemining’wa GN, Olubayo FM, Saha HM. 2016. Effect of drought stress on canopy temperature, growth and yield performance of cowpea varieties. Int J Plant Soil Sci. 9(3):1–12. doi: 10.9734/IJPSS/2016/21844.
  • Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, Sebastiani L, Diaz-Espejo A. 2014. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J Exp Bot. 65(12):3143–3156. doi: 10.1093/jxb/eru160.
  • Praxedes SC, Gomes-Filho E, Damatta FM, Lacerda CF, Prisco JT. 2014. Salt stress tolerance in cowpea is poorly related to the ability to cope with oxidative stress. Acta Bot Croat. 73(1):51–62. doi: 10.2478/botcro-2013-0010.
  • R Development Core Team. 2016. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Reddy AR, Chaitanya KV, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 161(11):1189–1202. doi: 10.1016/j.jplph.2004.01.013.
  • Rivas R, Falcão HM, Ribeiro RV, Machado EC, Pimentel C, Santos MG. 2016. Drought tolerance in cowpea species is driven by less sensitivity of leaf gas exchange to water deficit and rapid recovery of photosynthesis after rehydration. S Afr J Bot. 103:101–107. doi:10.1016/j.sajb.2015.08.008.
  • Saito K. 2000. Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol. 3(3):188–195. doi: 10.1016/S1369-5266(00)00063-7.
  • Samanta S, Singh A, Roychoudhury A. 2020. Involvement of sulfur in the regulation of abiotic stress tolerance in plants. In: Roychoudhury A, and Tripathi D, editors. Protective chemical agents in the amelioration of plant abiotic stress: biochem Mol Perspect. Hoboken: Wiley; pp. 437–466.
  • Sanders GJ, Arndt SK. 2012. Osmotic adjustment under drought conditions. In: Aroca R, editor. Plant responses to drought stress. 1st ed. Berlin, Heidelberg: Springer; pp. 199–229. doi:10.1007/978-3-642-32653-0_8
  • Shafiq BA, Nawaz F, Majeed S, Aurangzaib M, Mamun AA, Ahsan M, Ahmad KS, Shehzad MA, Ali M, Hashim S, et al. 2021. Sulfate-based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress. J Soil Sci Plant Nutr. 21(3):2229–2241. doi:10.1007/s42729-021-00516-x.
  • Silva FC. 2009. Manual de análises químicas de solos, plantas e fertilizantes [Protocols of chemical analysis of soils, plants and fertilizers]. 2nd ed. Brasília, DF, Brasil: EMBRAPA.
  • Sousa DPF, Braga BB, Gondim FA, Gomes-Filho E, Martins K, de Brito POB. 2016. Increased drought tolerance in maize plants induced by H2O2 is closely related to an enhanced enzymatic antioxidant system and higher soluble protein and organic solutes contents. Theor Exp Plant Physiol. 28(3):297–306. doi: 10.1007/s40626-016-0069-3.
  • Ullah A, Farooq M. 2022. The challenge of drought stress for grain legumes and options for improvement. Arch Agron Soil Sci. 68(11):1601–1618. doi: 10.1080/03650340.2021.1906413.
  • Varshney RK, Terauchi R, McCouch SR. 2014. Harvesting the promising fruits of genomics: Applying genome sequencing technologies to crop breeding. PLoS Biol. 10(6):e1001883. doi: 10.1371/journal.pbio.1001883.
  • Xu Z, Zhou G, Shimizu H. 2009. Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? J Exp Bot. 60(13):3737–3749. doi: 10.1093/jxb/erp216.
  • Yan W, Wang Q, Liu ML, Chen B, Cai R. 2017. Overexpression of a maize MYB48 gene confers drought tolerance in transgenic Arabidopsis plants. J Plant Biol. 60:612–621. doi:10.1007/s12374-017-0273-y.
  • Zhao C, Haigh AM, Holford P, Chen ZH. 2018. Roles of chloroplast retrograde signals and ion transport in plant drought tolerance. Int J Mol Sci. 19(4):963. doi: 10.3390/ijms19040963.
  • Zhou S, Han YY, Chen Y, Kong X, Wang W. 2015. The involvement of expansins in response to water stress during leaf development in wheat. J Plant Physiol. 183:64–74. doi:10.1016/j.jplph.2015.05.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.