Publication Cover
Mineral Processing and Extractive Metallurgy
Transactions of the Institutions of Mining and Metallurgy
Volume 127, 2018 - Issue 4
258
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An investigation of factors influencing freeze lining behaviour

, &
Pages 195-209 | Received 16 Oct 2016, Accepted 31 Aug 2017, Published online: 13 Sep 2017

References

  • Blancher S,B, Sayasenh A, Crespo E. 2015. Follow-up and mineralogical characterization of freeze lining evolution: a record of furnace life. In: Metal 2015. Brno: Tanger Ltd.; p. 1387–1393.
  • Bruggeman JN, Danka DJ. 1990. Two-dimensional thermal modeling of the hall-héroult cell. In: Bickert M, editor. Light Met. Warrrendalte: TMS; p. 203–209.
  • Campforts M, Blanpain B, Wollants P. 2009. The importance of slag engineering in freeze-lining applications. Metall Mater Trans B. 40(5):643–655. doi: 10.1007/s11663-009-9258-7
  • Chen JJJ, Wei CC, Thomson S, Welch BJ, Taylor MP. 1994. A study of cell ledge heat transfer using an analogue ice-water model. In: Mannweiler U, editor. Light Met. Warrendale: TMS; p. 285–293.
  • Conde-Petit MR. 2014. Aqueous solutions of lithium and calcium chlorides: property formulations for use in air conditioning equipment design. Zurich: M. Conde Engineering.
  • Crivits T. 2016. Fundamental studies on the chemical aspects of freeze linings [PhD thesis]. University of Queensland.
  • DOWChemical. 2002. Calcium chloride handbook: a guide to properties, forms, storage and handling. Midland,MI: The DOW Chemical Company.
  • Fallah-Mehrjardi A. 2013. Investigation of freeze-lining formation in metallurgical systems [PhD Thesis]. University of Queensland.
  • Fallah-Mehrjardi A, Hayes PC, Jak E. 2013a. Investigation of freeze-linings in copper-containing slag systems: part I. preliminary experiments. Metall Trans B. 44B:534–548. doi: 10.1007/s11663-013-9806-z
  • Fallah-Mehrjardi A, Hayes PC, Jak E. 2013b. Investigation of freeze linings in copper-containing slag systems: part II. mechanism of the deposit stabilization. Metall Trans B. 44B:549–560. doi: 10.1007/s11663-013-9807-y
  • Fallah-Mehrjardi A, Hayes PC, Jak E. 2013c. Investigation of freeze lining in copper-containing slag systems: Part III. High-temperature experimental investigation of the effect of bath agitation. Metall Mater B. 44B:1337–1351. doi: 10.1007/s11663-013-9925-6
  • Fallah-Mehrjardi A, Hayes PC, Jak E. 2014a. Investigation of freeze-linings in aluminum production cells. Metall Mater Trans B. 45(4):1232–1247. doi: 10.1007/s11663-014-0078-z
  • Fallah-Mehrjardi A, Hayes PC, Jak E. 2014b. Understanding slag freeze linings. JOM. 66(9):1654–1663. doi: 10.1007/s11837-014-1127-4
  • Fallah-Mehrjardi A, Hayes PC, Jak E. 2014c. Further experimental investigation of freeze-lining/bath interface at steady-state conditions. Met Trans B. 45(6):2040–2049. doi: 10.1007/s11663-014-0149-1
  • Fallah-Mehrjardi A, Hayes PC, Vervynckt S, Jak E. 2014. Investigation of freeze-linings in a nonferrous industrial slag. Metall Mater Trans B. 45(3):850–863. doi: 10.1007/s11663-014-0074-3
  • Fallah-Mehrjardi A, Jansson J, Taskinen P, Hayes PC, Jak E. 2014. Investigation of the freeze-lining formed in an industrial copper converting calcium ferrite slag. Metall Mater Trans B. 45B:864–874. doi: 10.1007/s11663-013-9987-5
  • Gardon R. 1961. A review of radiant heat transfer in glass. J Am Ceram Soc. 44(7):305–312. doi: 10.1111/j.1151-2916.1961.tb15914.x
  • Guevara FJ, Irons GA. 2011a. Simulation of slag freeze layer formation: part I. experimental study. Metall Mater Trans B. 42B:652–663. doi: 10.1007/s11663-011-9524-3
  • Guevara FJ, Irons GA. 2011b. Simulation of slag freeze layer formation: part II: numerical model. Metall Mater Trans B. 42B:664–676. doi: 10.1007/s11663-011-9525-2
  • Hayes PC. 2013. Reaction kinetics. In: Seetharaman Seshadri, McLean Alexander, Guthrie Roderick, Sridhar Seetharaman, editors. Treatise on process metallurgy – volume 1 – process fundamentals. UK: Elsevier; p. 817–829.
  • Jansson J, Taskinen P, Kaskiala M. 2014. Freeze lining formation in continuous converting calcium ferrite slags. II. Can Met Q. 53(1):11–16. doi: 10.1179/1879139513Y.0000000093
  • Kalliala O, Kaskiala M, Suortti T, Taskinen P. 2015. Freeze lining formation on water cooled refractory wall. Min Proc Extractive Metall. 124(4):224–232. doi: 10.1179/1743285515Y.0000000012
  • Marx F, Shapiro M, Henning B. 2010. Application of high intensity refractory cooling systems in pyrometallurgical vessel design. 12th International Ferroalloys Congress;Helsinki, Finland: SAIMM.
  • Pistorius PC. 2004. Equilibrium interactions between freeze lining and slag in ilmenite smelting. J S Afr I Min Metall. 104:417–422.
  • Rasbane WS. 1997–2015. ‘Imagej’. Bethesda (MD): U.S. National Institutes of Health.
  • Robertson DGC, Kang S. 1999. Model studies of heat transfer and flow in slag-cleaning furnaces. In: El-Kaddah N, Robertson DGC, Johansen ST, Voller, VR, editors. TMS annual meeting, fluid flow phenomena in minerals processing. San Diego (CA): TMS; p. 157–168.
  • Solheim A. 2003. Coupled heat and mass transfer during melting or freezing of sideledge in aluminium cells. 12th Aluminium Symposium;Bratislava, Slovakia.
  • Solheim A. 2011. Some aspects of heat transfer between bath and sideledge in aluminium reduction cells. In: Lindsay SJ, editor. Light metals. Warrendale: TMS; p. 381–386.
  • Solheim A, Thonstad J. 1983. Heat transfer coefficients between bath and side ledge in aluminum cells model experiments. In: Adkins EM, editor. Light Met. Warrendale: TMS; p. 425–435.
  • Solheim A, Thonstad J. 1984. Model experiments of heat transfer coefficients between bath and side ledge in aluminum cells. J Met. 36(3):51–55.
  • Solnordal CB, Jorgensen FRA, Taylor RN. 1998. Modeling the heat flow to an operating sirosmelt lance. Metall Mater Trans B. 29(2):485–492. doi: 10.1007/s11663-998-0128-5
  • Taylor MP, Welch BJ. 1987. Melt/freeze heat transfer measurements in cryolite-based electrolytes. Metall Trans B. 18B(3):391–398. doi: 10.1007/BF02656158
  • Thonstad J, Fellner P, Haarberg GM, Hives J, Kvande H, Sterten A. 2001. Aluminium electrolysis: fundamentals of the Hall-Héroult process, 3rd ed. Düsseldorf: Aluminium-Verlag GmbH.
  • Thonstad J, Rolseth S. 1983. Equilibrium between bath and side ledge in aluminium cells basic principles. In: Adkins EM, editor. Light Met. Warrendale: The Metallurgical Society of AIME; p. 415–424.
  • Valles A, Lenis V. 1995. Prediction of ledge profile in hall-héroult cells. In: Evans J, editor. Light Met. Warrendale: TMS; p. 309–313.
  • Verscheure K, Kyllo AK, Filzwieser A, Blanpain B, Wollants P. 2006. Furnace cooling technology in pyrometallurgical processes. In: Sohn international symposium. San Diego (CA): TMS; p. 139–154.
  • Wei CC, Chen JJJ, Welch BJ, Voller VR. 1997. Modelling of dynamic ledge heat transfer. In: Huglen R, editor. Light Met. Warrendale: TMS; p. 309–316.
  • Welty JR, Wicks CE, Wilson RE, Rorrer GL. 2007. Fundamentals of momentum, heat, and mass transfer. USA: Wiley.
  • Zietsman JH. 2004. Interactions between freeze lining and slag bath in ilmenite smelting [PhD thesis]. University of Pretoria.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.