Publication Cover
Mineral Processing and Extractive Metallurgy
Transactions of the Institutions of Mining and Metallurgy
Volume 128, 2019 - Issue 3
302
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Thermodynamic model of metallothermic smelting of ferromolybdenum

& ORCID Icon
Pages 193-204 | Received 21 Aug 2017, Accepted 20 Dec 2017, Published online: 10 Jan 2018

References

  • Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, et al. 2009. Factsage thermochemical software and databases – recent developments. Calphad. 33(2):295–311. doi: 10.1016/j.calphad.2008.09.009
  • Ban-Ya S. 1993. Mathematical expression of slag-metal reactions in steelmaking process by quadratic formalism based on the regular solution model. ISIJ Int. 33:2–11. doi: 10.2355/isijinternational.33.2
  • Barrera P. 2016. Molybdenum price outlook 2017: Price recovery to continue? Investing News Network; [accessed 2017 Dec 7]. https://investingnews.com/daily/resource-investing/industrial-metals-investing/molybdenum-investing/molybdenum-outlook/
  • Barrientos M, Soria C. 2016. Ferroalloys: World production by country, furnace type, and alloy type; [accessed 2017 May 30]. http://www.indexmundi.com/en/commodities/minerals/ferroalloys/ferroalloys_t7.html
  • Bhardwaj BP. 2014. The complete book on ferroalloys. 61–63, Niir Project Consultancy Services, Delhi, India.
  • Braithwaite ER, Haber J. 1994. Studies in inorganic chemistry 19. Molybdenum – an outline of its chemistry and uses, 13-14. Amsterdam: Elsevier.
  • Cardarelli F. 2008. Materials handbook – a concise desktop reference. 2nd ed., 375. London: Springer-Verlag.
  • China Molybdenum Co. 2007. Products, molybdenum oxide; [accessed 2017 Jun 10]. http://www.chinamoly.com/en/03products/detail_yanghuamu.htm
  • Chychko A. 2010. Energy and environmental optimization of some aspects of EAF practice with novel process solutions [PhD thesis]. Stockholm: Royal Institute of Technology.
  • Chychko A, Teng L, Seetharaman S. 2010. Moo3 evaporation studies for binary systems towards choice of Mo precursors in EAF. Steel Res. Int. 81(9):784–791. doi: 10.1002/srin.201000055
  • Cook CJ. 2011. Mount Hope Project. U.S. Department of the Interior EIS No.NV063-EIS07-019; [accessed 2017 June 11]. https://books.google.com.au/books?id = CQMyAQAAMAAJ, 42
  • De Fúccio Jr.R, De Fúccio A, Betz EW, De F Sousa CA. 1992. A semi-continuous autothermic reduction process for the production of ferroniobium. INFACON 6: Proceedings of the 6th International Ferroalloys Congress, (ed. H. W. Glen), 279–283, Johannesburg: South African Institute of Mining and Metallurgy.
  • Derin B, Yucel O, Hack K. 2010. Thermochemical computations in carbothermic and metallothermic ferroalloy processes. 12th International Ferroalloys Congress (ed. A.Vartianen), 207–213, Helsinki: Outotec Oyj.
  • Durrer R, Volkert G, Frank, K-D. 1972. Metallurgie der ferrolegierungen. 2nd ed. Berlin: Springer-Verlag.
  • Eissa M, Ahmed A, El Fawkhry M. 2015. Conversion of mill scale waste into valuable products via carbothermic reduction. J. Metall. Article ID926028. doi: 10.1155/2015/926028
  • Elliott JF, Gleiser M, Ramakrishna V. 1963. Thermochemistry for steelmaking: Vol.2. thermodynamic and transport properties, 512. Reading (MA): Addison-Wesley.
  • Elyutin VP, Pavlov YA, Levin BE, Alekseev EM. 1957. Production of ferroalloys electrometallurgy, 2nd ed. Jerusalem: Israel Program for Scientific Translations.
  • Gao YM, Jiang Y, Huang S. 2012. Reduction of molybdenum oxide from steelmaking slags by pure liquid iron. J Miner Metall Sect B Metall. 48(1):25–36. doi: 10.2298/JMMB110620006G
  • Gasik M. 2013. Technology of molybdenum ferroalloys. In Gasik, M, editor. Handbook of ferroalloys. Amsterdam: Elsevier; p. 387–395.
  • Gasik MI, Lyakishev NP, Gasik MM. 2009. Physical chemistry and technology of ferroalloys: a university handbook. Ukranian: Dnipropetrovsk, System Technologies Publication, ISBN 966-8421-45-7. 251
  • Gavrilovski M, Monojlovic V, Kamberovic Z, Korac M, Sokic M. 2014. Semi-empirical software for the aluminothermic and carbothermic reactions. Metall Mater Eng. 20(3):199–206. doi: 10.5937/metmateng1403199G
  • Gupta CK. 1992. Extractive metallurgy of molybdenum, 292. Boca Raton (FL): CRC Press.
  • Güven G. 2010. Metalotermik yöntemle ferromolibden üretimindeki parametrelerin optimizasyonu [MSc thesis]. Turkey: Instanbul Technical University.
  • Habashi F. 1997. Handbook of extractive metallurgy, vol. 1. Weinheim: Wiley-VCH, p. 477–482.
  • Ivanov I, Donchev I, Georgiev A. 1984. Phase and structural studies of ferromolybdenum slags. Metalurgiya (Sofia). 39:6–11.
  • Jha MC. 2001. Extractive metallurgy of molybdenum. In Mishra B, editor. Review of extraction, processing, properties, and applications of reactive metals. Warrendale (PA): The Minerals, Metals and Materials Society; p. 73–82.
  • Kobayashi K. 1992. European Patent Application 0-509-447-A2, Japan Metals & Chemicals Co.Ltd.
  • Kornievskiy VN, Panchenko AI, Logozinskiy IN, Salnikov AS, Gasik MI, Shibeko PA, Budnik IL, Yakovitskiy AV. 2015. Ferromolybdenum production according to silicoaluminothermal method. 14th International Ferroalloys Congress, 139–144, Kiev.
  • Kosakevitch P. 1960. Viscosite et éléments structuraux des aluminosilicates foudus: laiters CaO-Al2O3-SiO2 entre 1600°C et 2000°C. Rev Metall (Paris) 57:149–160. doi: 10.1051/metal/196057020149
  • Langeloth Metallurgical Co. 2013. Tech oxide datasheet; [accessed 2017 June 10]. http://www.langeloth.com/index_files/Page1209.html
  • Lasheen TA, El-Ahmady ME, Hassib HB, Helal AS. 2015. Molybdenum metallurgy review: hydrometallurgical routes to recovery of molybdenum from ores and mineral raw materials. Miner Process Extract Metall Rev. 36(3):145–173. doi: 10.1080/08827508.2013.868347
  • Li G, You Z, Sun H, Peng Z, Zhang Y, Jiang T. 2016. Separation of rhenium from lead-rich molybdenite concentrate via hydrochloric acid leaching followed by oxidative roasting. Metals. 6:282. doi: 10.3390/met6110282
  • Lupis CHP. 1983. Chemical thermodynamics of materials. Englewood Cliffs (NJ): Prentice Hall; p. 524–527.
  • Moazemi-Goodarzi GM, Rezai B, Seifikhani A. 2014. Leaching and kinetic model of molybdenite concentrate using hydrogen peroxide in sulfuric acid solution. Iran J Chem Chem Eng. 33(2):73–85.
  • Molibdenos y Metales SA. 2015. Technical molybdic oxide – powder; [accessed 2017 June 10]. http://www.molymet.com/en/Productos/Paginas/Technical-Molybdic-Oxide-Powder.aspx
  • Murphy MW, Wheeler ES, Linz A. 1946. The conversion plant at Langeloth, Pa. Miner Metall. 27(474):350–352.
  • Nair KU, Sathiyamoorthy D, Bose DK, Sundaresan M, Gupta CK. 1987. Chlorination of commercial molybdenite concentrate in a fluidised bed reactor. Met Trans B. 18B:445–449. doi: 10.1007/BF02656165
  • Nakamoto M, Lee JH, Tanaka T. 2005. A model for estimation of viscosity of molten silicate slag. ISIJ Int. 45:651–656. doi: 10.2355/isijinternational.45.651
  • O’Brien R. 2009. Australia’s iron ore product quality, Geoscience Australia, Onshore Minerals and Energy Division.
  • O’Neill HStC, Eggins SM. 2002. The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem Geol. 186:151–181. doi: 10.1016/S0009-2541(01)00414-4
  • Outotec Research Oy. 2013. HSC Chemistry 7.1.; [accessed 2017 June 4]. http://www.outotec.com/Global/Products%20and%20services/Software/HSC/HSC%20Brochure.pdf
  • Pearson WB. 1964. A handbook of lattice spacings and structures of metals and alloys, 930. London: Pergamon Press.
  • Rajkumar VB, Hari Kumar KC. 2014. Thermodynamic modelling of the Fe-Mo system coupled with experiments and ab initio calculations. J Alloys Comp. 611:303–312. doi: 10.1016/j.jallcom.2014.05.030
  • Rao YK. 1985. Stoichiometry and thermodynamics of metallurgical processes, 892. Cambridge: Cambridge University Press.
  • Riss M, Khodorovsky Y. 1967. Production of ferroalloys. Moscow: MIR Publishers.
  • Rowe A. 2005. Fluid evolution of the magmatic hydrothermal breccia of the Goat Hill orebody, Questa Climax-type porphyry molybdenum system, New Mexico – a fluid inclusion study. MSc Thesis, New Mexico Institute of Mining & Technology Socorro, USA, 5.
  • Rudnick RL, Gao S. 2003. Composition of the continental crust, in Treatise on Geochemistry, vol.3, 1–64. Elsevier. doi: 10.1016/B0-80-043751-6/03016-4
  • Shaw M. Investing News Network. 2017. [accessed 2017 May 30] http://investingnews.com/daily/resource-investing/industrial-metals-investing/molybdenum-investing/top-molybdenum-producing-countries-china-united-states-chile-peru-mexico
  • Shields JA. 2013. Applications of molybdenum metal and its alloys, International Molybdenum Association, London; [accessed 2017 Dec 7]. http://www.imoa.info/download_files/molybdenum/Applications_Mo_Metal.pdf
  • Sigworth GK, Elliott JF. 1974. The thermodynamics of liquid dilute iron alloys. Metal Sci. 8:298–310. doi: 10.1179/msc.1974.8.1.298
  • Stoephasius JC, Friedrich B. 2004. Modelling of metallothermic reactions – impact of energy effects on the calculation of the reaction mixture. Erzmetall. 57(4):217–224.
  • Suri AK, Gupta CK. 1997. Production of ferromolybdenum from Indian resources. In Vaish AK, Singh SD, Goswami NG, Ramachandrarao P, editors. Ferro alloy industries in the liberalised economy. Jamshedpur: National Metallurgical Laboratory, p. 71–82.
  • Swinbourne DR. 2014. Understanding ferronickel smelting from laterites through computational thermodynamics modelling. Miner Process Extract Metall. 123(3):127–140. doi: 10.1179/1743285514Y.0000000056
  • Swinbourne DR, Kho TS. 2012. Computational thermodynamics modelling of minor element distributions during copper flash converting. Metall Mater Trans B. 43B(4):823–829. doi: 10.1007/s11663-012-9652-4
  • Swinbourne DR, Kho TS, Langberg D, Blanpain B, Arnout, S. 2010. Understanding stainless steelmaking through computational thermodynamics. Part 2: VOD converting. Miner Process Extract Metall. 119(2):107–115. doi: 10.1179/174328509X481909
  • Swinbourne DR, Richardson T, Cabalteja, F. 2016. Understanding ferrovanadium smelting through computational thermodynamics modelling. Miner Process Extract Metall. 125(1):45–55. doi: 10.1179/1743285515Y.0000000019
  • Urbain G. 1983. Viscosités de liquide du système CaO-Al2O3. Revue Internationale des Hautes Températures et des Réfractaires. 20:135–139.
  • Vasil’ev VI. 1975. Sb. Tr. Chelyab. Elektrometall. Komb., 4, 55–59. Chem. Abstr. 1976, 84:138 836t.
  • Wu LS, Gran J, Sichen, D. 2011. The effect of calcium fluoride on slag viscosity. Metall Mater Trans B. 42B:928–931. doi: 10.1007/s11663-011-9546-x
  • Yücel O, Cinar F, Addemir O, Tekin O. 1996. The preparation of ferroboron and ferrovanadium by aluminothermic reduction. High Temp Mater Proc. 15:103–109. doi: 10.1515/HTMP.1996.15.1-2.103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.