891
Views
23
CrossRef citations to date
0
Altmetric
Articles

Soil erosion risk assessment in the Umzintlava catchment (T32E), Eastern Cape, South Africa, using RUSLE and random forest algorithm

ORCID Icon, ORCID Icon & ORCID Icon
Pages 139-162 | Received 03 Jun 2019, Accepted 13 Jan 2020, Published online: 21 Jan 2020

References

  • Acocks, J. P. H. (1988). Veld types of South Africa. Memoirs of the Botanical Survey of South Africa, 57, 1–146.
  • Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 3440–3458.
  • Adelabu, S., & Dube, T. (2015). Employing ground and satellite-based QUICKBIRD data and random forest to discriminate five tree species in a Southern African woodland. Geocarto International, 30(4), 457–471.
  • Aiello, A., Adamo, M., & Canora, F. (2015). Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. Catena, 131, 174–185.
  • Angulo-Martínez, M., & Beguería, S. (2009). Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology, 379(1–2), 111–121.
  • Beckedahl, H. R., & De Villiers, A. B. (2000). Accelerated erosion by piping in the Eastern Cape Province, South Africa. South African Geographical Journal, 82(3), 157–162.
  • Bergsma, E., Charman, P., Gibbons, F., Hurni, H., Moldenhauer, W. C., & Panichapong, S. (1996). Terminology for soil erosion and conservation. Wageningen: ISRIC.
  • Bhat, S. A., Hamid, I., Dar, M. U. D., Rasool, D., Pandit, B. A., & Khan, S. (2017). Soil erosion modeling using RUSLE & GIS on micro watershed of J&K. Journal of Pharmacognosy and Phytochemistry, 6(5), 838–842.
  • Boardman, J., Parsons, A. J., Holland, R., Holmes, P. J., & Washington, R. (2003). Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. Catena, 50(2–4), 165–184.
  • Bonilla, C. A., & Vidal, K. L. (2011). Rainfall erosivity in central Chile. Journal of Hydrology, 410(1–2), 126–133.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
  • Da Silva, A. M. (2004). Rainfall erosivity map for Brazil. Catena, 57(3), 251–259.
  • Desmet, P. J. J., & Govers, G. (1996). A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427–433.
  • Faulkner, H., Alexander, R., Teeuw, R., & Zukowskyj, P. (2004). Variations in soil dispersivity across a gully head displaying shallow sub‐surface pipes, and the role of shallow pipes in rill initiation. Earth Surface Processes and Landforms: the Journal of the British Geomorphological Research Group, 29(9), 1143–1160.
  • Foster, G. R., McCool, D. K., Renard, K. G., & Moldenhauer, W. C. (1981). Conversion of the universal soil loss equation to SI metric units. Journal of Soil and Water Conservation, 36(6), 355–359.
  • Fu, G., Chen, S., & McCool, D. K. (2006). Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil and Tillage Research, 85(1–2), 38–49.
  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of nethravathi basin. Geoscience Frontiers, 7(6), 953–961.
  • Garland, G. G. (1995). Soil erosion in South Africa-A technical review. Pretoria: National Department of Agriculture.
  • Gashaw, T., Tulu, T., & Argaw, M. (2018). Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia. Environmental Systems Research, 6(1), 1.
  • Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and Remote sensing techniques: A case of koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2), 126–136.
  • Gitas, I. Z., Douros, K., Minakou, C., Silleos, G. N., & Karydas, C. G. (2009). Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. EARSeL eProceedings, 8(1), 40–52.
  • Goldblatt, R., You, W., Hanson, G., & Khandelwal, A. (2016). Detecting the boundaries of urban areas in india: A dataset for pixel-based image classification in google earth engine. Remote Sensing, 8(8), 634.
  • Hartmann, M. O., McPhee, P. J., & Bode, M. L. (1989). The erodibility of some soil series in the pineapple-producing coastal area of the Eastern Cape. South African Journal of Plant and Soil, 6(4), 271–275.
  • Heung, B., Bakker, L., Schmidt, M. G., & Dragićević, S. (2013). Modelling the dynamics of soil redistribution induced by sheet erosion using the universal soil loss equation and cellular automata. Geoderma, 202, 112–125.
  • Jahun, B. G., Ibrahim, R., Dlamini, N. S., & Musa, S. M. (2015). Review of soil erosion assessment using RUSLE model and GIS. Journal of Biology, Agriculture and Healthcare, 5(9), 36–47.
  • Kamaludin, H., Lihan, T., Ali Rahman, Z., Mustapha, M. A., Idris, W. M. R., & Rahim, S. A. (2013). Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment yield (SY). Hydrology and Earth System Sciences Discussions, 10(4), 4567–4596.
  • Kouli, M., Soupios, P., & Vallianatos, F. (2009). Soil erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57(3), 483–497.
  • Laker, M. C. (1990). The conservation status of agricultural resources in the developing areas of South Africa. Proceedings of the National Veld Trust Conference on the Conservation Status of Agricultural Resources in RSA, Pretoria, South Africa.
  • Laker, M. C. (2004). Advances in soil erosion, soil conservation, land suitability evaluation and land use planning research in South Africa, 1978–2003. South African Journal of Plant and Soil, 21(5), 345–368.
  • Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539.
  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450.
  • Lane, L. J., Kidwell, M. R., & Weltz, M. A. (2000). Watershed sediment yield and rangeland health. International Journal of Sediment Research, 15(1), 51–59.
  • Le Roux, J. J., Morgenthal, T. L., Malherbe, J., Pretorius, D. J., & Sumner, P. D. (2008). Water erosion prediction at a national scale for South Africa. Water SA, 34(3), 305–314.
  • McCool, D. K., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1989). Revised slope length factor for the universal soil loss equation. Transactions of the American Society of Agricultural Engineers, 32(5), 1571–1576.
  • McPhee, P. J., & Smithen, A. A. (1984). Application of the USLE in the republic of South Africa. Agricultural Engineering in South Africa, 18(1), 5–13.
  • Merritt, W. S., Letcher, R. A., & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environmental Modelling & Software, 18(8–9), 761–799.
  • Mhangara, P., Kakembo, V., & Lim, K. J. (2012). Soil erosion risk assessment of the keiskamma catchment, South Africa using GIS and remote sensing. Environmental Earth Sciences, 65(7), 2087–2102.
  • Moore, I. D., & Burch, G. J. (1986). Physical basis of the length-slope factor in the universal soil loss equation 1. Soil Science Society of America Journal, 50(5), 1294–1298.
  • Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the revised universal soil loss equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423–428.
  • Morgan, R. P. C. (2005). Soil erosion and conservation. Oxford: Blackwell Publishing.
  • Noori, H., Siadatmousavi, S. M., & Mojaradi, B. (2016). Assessment of sediment yield using RS and GIS at two sub-basins of Dez Watershed, Iran. International Soil and Water Conservation Research, 4(3), 199–206.
  • Oldeman, L. R., Hakkeling, R. T. A., & Sombroek, W. G. (1991). World map of the status of human-induced soil degradation: An explanatory note. Wageningen: ISRIC.
  • Phinzi, K. (2018). Spatio-temporal appraisal of water-borne erosion using optical remote sensing and GIS in the Umzintlava catchment (T32E), Eastern Cape, South Africa (Master’s thesis). Retrieved from http://ukzn-dspace.ukzn.ac.za/handle/10413/16334.
  • Phinzi, K., & Ngetar, N. S. (2017). Mapping soil erosion in a quaternary catchment in Eastern Cape using geographic information system and remote sensing. South African Journal of Geomatics, 6(1), 11–29.
  • Phinzi, K., & Ngetar, N. S. (2019a). The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. International Soil and Water Conservation Research, 7(1), 27–46.
  • Phinzi, K., & Ngetar, N. S. (2019b). Land use/land cover dynamics and soil erosion in the umzintlava catchment (T32E), Eastern Cape, South Africa. Transactions of the Royal Society of South Africa, 74(3), 223–237.
  • Pimentel, D. (2006). Soil erosion: A food and environmental threat. Environment, Development and Sustainability, 8(1), 119–137.
  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., … Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123.
  • Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using revised universal soil loss equation (RUSLE) and geo-information technology. Geoscience Frontiers, 3(2), 209–215.
  • Rahman, M. R., Shi, Z. H., & Chongfa, C. (2009). Soil erosion hazard evaluation – An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 220(13–14), 1724–1734.
  • Renard, K. G., & Foster, G. R. (1983). Soil conservation: Principles of erosion by water. Dryland Agriculture, 23, 155–176.
  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE) (Report No. 703). Washington, DC: United States Department of Agriculture.
  • Renard, K. G., Yoder, D. C., Lightle, D. T., & Dabney, S. M. (2011). Universal soil loss equation and revised universal soil loss equation. In R. P. C. Morgan & M. A. Nearing (Eds.), Handbook of erosion modelling (pp. 135–167). West Sussex: Wiley-Blackwell.
  • Risse, L. M., Nearing, M. A., Laflen, J. M., & Nicks, A. D. (1993). Error assessment in the universal soil loss equation. Soil Science Society of America Journal, 57(3), 825–833.
  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.
  • Rosewell, C. J. (1993). SOILOSS: A program to assist in the selection of management practices to reduce erosion (Report No. 11). Sydney: Soil Conservation Services.
  • Ruiz-Hernandez, I. E., & Shi, W. (2018). A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. International Journal of Remote Sensing, 39(4), 1175–1198.
  • Salako, F. K. (2010). Development of isoerodent maps for Nigeria from daily rainfall amount. Geoderma, 156(3–4), 372–378.
  • Sepuru, T. K., & Dube, T. (2018). An appraisal on the progress of remote sensing applications in soil erosion mapping and monitoring. Remote Sensing Applications: Society and Environment, 9, 1–9.
  • Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena, 55(1), 33–48.
  • Singer, M. J., & Warkentin, B. P. (1996). Soils in an environmental context: An American perspective. Catena, 27(3–4), 179–189.
  • Singh, G., & Panda, R. K. (2017). Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India. International Soil and Water Conservation Research, 5(3), 202–211.
  • Stocking, M. A., & Elwell, H. A. (1976). Rainfall erosivity over Rhodesia. Transactions of the Institute of British Geographers, 1(2), 231–245.
  • Tadele, H., Mekuriaw, A., Selassie, Y. G., & Tsegaye, L. (2017). Land use/land cover factor values and accuracy assessment using a GIS and remote sensing in the case of the quashay watershed in Northwestern Ethiopia. Journal of Natural Resources and Development, 7, 38–44.
  • Tanyaş, H., Kolat, Ç., & Süzen, M. L. (2015). A new approach to estimate cover-management factor of RUSLE and validation of RUSLE model in the watershed of Kartalkaya Dam. Journal of Hydrology, 528, 584–598.
  • Teng, H. F., Jie, H. U., Yue, Z. H. O. U., Zhou, L. Q., & Zhou, S. H. I. (2019). Modelling and mapping soil erosion potential in China. Journal of Integrative Agriculture, 18(2), 251–264.
  • Thomas, J., Joseph, S., & Thrivikramji, K. P. (2018). Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers, 9(3), 893–906.
  • Tran, L. T., Ridgley, M. A., Duckstein, L., & Sutherland, R. (2002). Application of fuzzy logic-based modeling to improve the performance of the revised universal soil loss equation. Catena, 47(3), 203–226.
  • U.S. Environmental Protection Agency-EPA. (2008). Fate, transport and transformation test guidelines: OPPTS 835.1230 adsorption/deposition (batch equilibrium) Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi/P1005IVR.PDF?Dockey=P1005IVR.PDF.
  • Valentin, C., Poesen, J., & Li, Y. (2005). Gully erosion: Impacts, factors and control. Catena, 63(2–3), 132–153.
  • Van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.397.2309&rep=rep1&type=pdf.
  • Van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (2000). Soil erosion risk assessment in Europe. Retrieved from https://www.preventionweb.net/files/1581_ereurnew2.pdf.
  • Van Oost, K., Quine, T. A., Govers, G., De Gryze, S., Six, J., Harden, J. W., … Giraldez, J. V. (2007). The impact of agricultural soil erosion on the global carbon cycle. Science, 318(5850), 626–629.
  • Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A review. Catena, 65(1), 2–18.
  • Wang, R., Zhang, S., Yang, J., Pu, L., Yang, C., Yu, L., … Bu, K. (2016). Integrated use of GCM, RS, and GIS for the assessment of hillslope and gully erosion in the mushi river sub-catchment, Northeast China. Sustainability, 8(4), 317.
  • Weaver, A. V. B. (1991). The distribution of soil erosion as a function of slope aspect and parent material in Ciskei, Southern Africa. GeoJournal, 23(1), 29–34.
  • Wener, C. G. (1981). Soil conservation in Kenya, Nairobi, Nairobi. Ministry of Agriculture, Soil Conservation Extension Unit.
  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). Soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26, 189–193.
  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-a guide to conservation planning (Report No. 537). Washington D. C: United States Department of Agriculture.
  • Yang, D., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17(14), 2913–2928.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.