386
Views
4
CrossRef citations to date
0
Altmetric
Articles

Mapping the spatial distribution of the yellowwood tree (Podocarpus henkelii) in the Weza-Ngele forest using the newly launched Sentinel-2 multispectral imager data

, , & ORCID Icon
Pages 204-222 | Received 14 May 2018, Accepted 22 Jan 2020, Published online: 16 Feb 2020

References

  • Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 3440–3458.
  • Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), 1110.
  • Adelabu, S., & Dube, T. (2015). Employing ground and satellite-based QuickBird data and random forest to discriminate five tree species in a Southern African Woodland. Geocarto International, 30(4), 457–471.
  • Adelabu, S., Mutanga, O., & Adam, E. (2015). Testing the reliability and stability of the internal accuracy assessment of random forest for classifying tree defoliation levels using different validation methods. Geocarto International, 30(7), 810–821.
  • Alig, R., Stewart, S., Wear, D., Stein, S., & Nowak, D. (2010). Conversions of Forest Land: Trends, Determinants, Projections, and Policy Considerations. In: J. M. Pye, H. M. Rauscher, Y. Sands, D. C. Lee, J. S. Beatty, eds. Advances in threat assessment and their application to forest and rangeland management. General Technical Report: PNW-GTR-802. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations, 1–26.
  • Al-Khaier, F. (2003, March). Soil salinity detection using satellite remote sensing. Thesis (MSc). International Institute for Geo-information Science and Earth Observation, Enschede .
  • Baldeck, C. A., Colgan, M. S., Féret, J. B., Levick, S. R., Martin, R. E., & Asner, G. P. (2014). Landscape‐scale variation in plant community composition of an African savanna from airborne species mapping. Ecological Applications, 24(1), 84–93.
  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.
  • Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. International Journal of Remote Sensing, 19(4), 657–675.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
  • Buschmann, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711–722.
  • Carter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Remote Sensing, 15(3), 697–703.
  • Chavez, P. S. (1996). Image-based atmospheric corrections-revisited and improved. Photogrammetric Engineering and Remote Sensing, 62(9), 1025–1035.
  • Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced data. Berkeley: University of California, 110, 1–12.
  • Cho, M. A., Malahlela, O., & Ramoelo, A. (2015). Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as case study. International Journal of Applied Earth Observation and Geoinformation, 38, 349–357.
  • Clerici, N., Valbuena Calderón, C. A., & Posada, J. M. (2017). Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. Journal of Maps, 13(2), 718–726.
  • Clevers, J. G., & Gitelson, A. A. (2013). Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 23, 344–351.
  • Crist, E. P., & Cicone, R. C. (1984). A physically-based transformation of Thematic Mapper data-The TM Tasseled Cap. IEEE Transactions on Geoscience and Remote Sensing, 22(3), 256–263.
  • Dalponte, M., Bruzzone, L., Vescovo, L., & Gianelle, D. (2009). The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas. Remote Sensing of Environment, 113(11), 2345–2355.
  • Davies, L. (2013). Call to save the yellowwood - South Africa’s National Tree. African wildlife conservation. Retrieved from https://www.africanbudgetsafaris.com/blog/save-south-africas-national-tree-the- yellowwood/
  • Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063–7081.
  • Dhau, I., Adam, E., Mutanga, O., Ayisi, K., Abdel-Rahman, E. M., Odindi, J., & Masocha, M. (2017). Testing the capability of spectral resolution of the new multispectral sensors on detecting the severity of grey leaf spot disease in maize crop. Geocarto International, 33(11),1–14.
  • Eredics, A., Németh, Z. I., Rákosa, R., Rasztovits, E., Móricz, N., & Vig, P. (2015). The effect of soil moisture on the reflectance spectra correlations in beech and sessile oak foliage. Acta Silvatica et Lignaria Hungarica, 11(1), 9–25.
  • Farjon, A. (2010). A handbook of the world’s conifers. Leiden: Koninklijke Brill.
  • Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., … Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186, 64–87.
  • Fensholt, R., Rasmussen, K., Nielsen, T. T., & Mbow, C. (2009). Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment, 113(9), 1886–1898.
  • Forkuor, G., Dimobe, K., Serme, I., & Tondoh, J. E. (2017). Landsat-8 vs. Sentinel-2: Examining the added value of Sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience & Remote Sensing, 55(3),1–24.
  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.
  • Gitelson, A. A., Keydan, G. P., & Merzlyak, M. N. (2006). Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 33(11), 1-5.
  • Government Gazette., 2016. Notice of the list of protected tree species under the national forests act, 1998 (act no. 84 of 1998).
  • Gray, C. J., Shaw, D. R., Gerard, P. D., & Bruce, L. M. (2008). Utility of multispectral imagery for soybean and weed species differentiation. Weed Technology, 22(4), 713–718.
  • Grieve, G. R. H., & Downs, C. T. (2015). A checklist of the plants of the forests and grasslands in the Weza district, southern KwaZulu-Natal and a review of their status in the Red Data List. Koedoe, 57(1), 1–7.
  • Hart, L. A., Grieve, G. R. H., & Downs, C. T. (2013). Fruiting phenology and implications of fruit availability in the fragmented Ngele Forest Complex, KwaZulu-Natal, South Africa. South African Journal of Botany, 88, 296–305.
  • Henrich, V., Götze, E., Jung, A., Sandow, C., Thürkow, D., & Gläßer, C., 2009. Development of an Online indices-database: Motivation, concept and implementation. Proceedings of the 6th EARSeL Imaging Spectroscopy SIG Workshop Innovative Tool for Scientific and Commercial Environment Applications. Tel Aviv. Israel, 16–19.
  • Henrich, V., Krauss, G., Götze, C., & Sandow, C. (2012). AK Fernerkundung. Bochum, 10,4–5.
  • Hojas-Gascon, L., Belward, A., Eva, H., Ceccherini, G., Hagolle, O., Garcia, J., & Cerutti, P. (2015). Potential improvement for forest cover and forest degradation mapping with the forthcoming Sentinel-2 program. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 417.
  • Hudak, A. T., & Brockett, B. H. (2004). Mapping fire scars in a southern African savannah using Landsat imagery. International Journal of Remote Sensing, 25(16), 3231–3243.
  • Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 4(9), 2661–2693.
  • Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sensing, 8(3), 166–193.
  • Jurgens, C. (1997). The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. International Journal of Remote Sensing, 18(17), 3583–3594.
  • Kawamura, K., Akiyama, T., Yokota, H. O., Tsutsumi, M., Yasuda, T., Watanabe, O., & Wang, S. (2005). Comparing MODIS vegetation indices with AVHRR NDVI for monitoring the forage quantity and quality in Inner Mongolia grassland, China. Grassland Science, 51(1), 33–40.
  • Khoshgoftaar, T. M., Golawala, M., & Van Hulse, J., 2007, October. An empirical study of learning from imbalanced data using random forest. 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), Rai, 2310–317.
  • Korpela, I., Ørka, H. O., Maltamo, M., Tokola, T., & Hyyppä, J. (2010). Tree species classification using airborne LiDAR–effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 44(2), 319–339.
  • Laurin, G. V., Puletti, N., Hawthorne, W., Liesenberg, V., Corona, P., Papale, D., … Valentini, R. (2016). Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment, 176, 163–176.
  • Lavender, S., & Lavender, A. (2015). Practical handbook of remote sensing. New York: CRC Press.
  • Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., … Chen, X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111–123.
  • Madonsela, S., Cho, M. A., Mathieu, R., Mutanga, O., Ramoelo, A., Kaszta, Z., … Wolff, E. (2017). Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. International Journal of Applied Earth Observation and Geoinformation, 58, 65–73.
  • Malahlela, O., Cho, M. A., & Mutanga, O. (2014). Mapping canopy gaps in an indigenous subtropical coastal forest using high-resolution WorldView-2 data. International Journal of Remote Sensing, 35(17), 6397–6417.
  • Malthus, T. J., Andrieu, B., Danson, F. M., Jaggard, K. W., & Steven, M. D. (1993). Candidate high spectral resolution infrared indices for crop cover. Remote Sensing of Environment, 46(2), 204–212.
  • Marot, C. (2017). Weza-Ngele Forest: Home to the endangered Cape parrot. South African Tourism [online]. Retrieved from http://www.southafrica.net/za/en/articles/entry/article-southafrica.net-weza-ngele-forest
  • Marshall, V., Lewis, M., & Ostendorf, B., 2012. Do additional bands (coastal, NIR-2, red- edge and yellow) in WorldView-2 multispectral imagery improve discrimination of an Invasive Tussock, Buffel Grass (Cenchrus Ciliaris). Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne 39, 1–5.
  • Martins, G. D., Galo, M. D. L. B. T., & Vieira, B. S. (2017). Detecting and mapping root-knot nematode infection in coffee crop using remote sensing measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5395–5403.
  • Matongera, T. N., Mutanga, O., Dube, T., & Sibanda, M. (2017). Detection and mapping the spatial distribution of bracken fern weeds using the Landsat 8 OLI new generation sensor. International Journal of Applied Earth Observation and Geoinformation, 57, 93–103.
  • Metternicht, G. (2003). Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24(14), 2855–2877.
  • Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute. South African National Biodiversity Institute: Pretoria.
  • Munyati, C. (2017). The potential for integrating Sentinel-2 MSI with SPOT 5 HRG and Landsat 8 OLI imagery for monitoring semi-arid savannah woody cover. International Journal of Remote Sensing, 38(17), 4888–4913.
  • Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406.
  • Negash, L., & van Staden, J. (2003). Vegetative propagation of the threatened East African yellowwood (Podocarpus falcatus). South African Journal of Botany, 69(2), 170–175.
  • Odindi, J., Mutanga, O., Rouget, M., & Hlanguza, N. (2016). Mapping alien and indigenous vegetation in the KwaZulu-Natal Sandstone Sourveld using remotely sensed data. Bothalia-African Biodiversity & Conservation, 46(2), 1–9.
  • Olsen, J. L., Ceccato, P., Proud, S. R., Fensholt, R., Grippa, M., Mougin, E., … Sandholt, I. (2013). Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid sahel. Remote Sensing, 5(6), 2898–2927.
  • Omer, G., Mutanga, O., Abdel-Rahman, E. M., & Adam, E. (2015). Performance of support vector machines and artificial neural network for mapping endangered tree species using worldview-2 data in Dukuduku forest, South Africa. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4825–4840.
  • Peerbhay, K. Y., Mutanga, O., & Ismail, R. (2013). Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 19–28.
  • Peerbhay, K. Y., Mutanga, O., & Ismail, R. (2015). Random forests unsupervised classification: The detection and mapping of solanum mauritianum infestations in plantation forestry using hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3107–3122.
  • Perrin, M., 2014. Ecology and conservation biology of the Cape Parrot Poicephalus robustus in afromontane forests of South Africa. BOU’s 2014 annual conference, Leicester.
  • Qiu, S., He, B., Yin, C., & Liao, Z., 2017. Assessments of Sentinel-2 vegetation red-edge spectral bands for improving land cover classification. ISPRS-international archives of the photogrammetry, remote sensing and spatial information sciences, Wuhan (pp.871–874).
  • Sibanda, M., Mutanga, O., & Rouget, M. (2016). Discriminating rangeland management practices using simulated HyspIRI, landsat 8 OLI, Sentinel-2 MSI, and VENµS spectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(9), 3957–3969.
  • Sinha, S., Sharma, L. K., & Nathawat, M. S. (2015). Improved land-use/land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 217–233.
  • Sist, P., Chave, J., & Rutishauser, E., 2015. Tropical forest degradation in the context of climate change: Increasing role and research challenges. Our Common Future under Climate Change, Paris, (pp. 260–271).
  • Thenkabail, P. S., Gumma, M. K., Teluguntla, P., & Mohammed, I. A. (2014). Hyperspectral remote sensing of vegetation and agricultural crops. Photogrammetric Engineering & Remote Sensing (PE&RS), 80(8), 697–723.
  • Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products. Remote Sensing of Environment, 70(1), 16–28.
  • Tian, F., Brandt, M., Liu, Y. Y., Verger, A., Tagesson, T., Diouf, A. A., … Fensholt, R. (2016). Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sensing of Environment, 177, 265–276.
  • Tsalyuk, M., Kelly, M., & Getz, W. M. (2017). Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 77–91.
  • Vrieling, A., De Leeuw, J., & Said, M. Y. (2013). Length of growing period over Africa: Variability and trends from 30 years of NDVI time series. Remote Sensing, 5(2), 982–1000.
  • Wirminghaus, J. O., Downs, C. T., Perrin, M. R., & Symes, C. T. (2001). Abundance and activity patterns of the Cape Parrot (Poicephalus robustus) in two afromontane forests in South Africa. African Zoology, 36(1), 71–77.
  • Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: A review. Journal of Plant Ecology, 1(1), 9–23.
  • Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017, 11–21.
  • Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1491–1507.
  • Zhou, Z., Yang, Y., & Chen, B. (2018). Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using SPOT6 satellite and UAV data. Aquatic Botany, 144, 38–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.