53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A review of the application and implications of cellular automata-based urban growth model in Africa

ORCID Icon &
Pages 290-308 | Received 14 Jun 2023, Accepted 24 Nov 2023, Published online: 27 Jan 2024

References

  • Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2016). The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: A review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389. https://doi.org/10.1016/j.jag.2016.07.007
  • Aburas, M. M., Ho, Y. M., Ramli, M. F., & Ash’aari, Z. H. (2017). Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an analytical hierarchy process and frequency ratio. International Journal of Applied Earth Observation and Geoinformation, 59, 65–78. https://doi.org/10.1016/j.jag.2017.03.006
  • Abutaleb, K., & Ahmed, F. (2016). Modeling of urban change using remote sensing data and cellular automata technique. Arabian Journal of Geosciences, 9(15), 1–10. https://doi.org/10.1007/s12517-016-2696-z
  • Alqurashi, A., Kumar, L., & Sinha, P. (2016). Urban land cover change modelling using time-series satellite images: A case study of urban growth in five cities of Saudi Arabia. Remote Sensing, 8(10), 838. https://doi.org/10.3390/rs8100838
  • Al-Sharif, A. A. A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291–4301. https://doi.org/10.1007/s12517-013-1119-7
  • Al-Sharif, A. A. A. A., & Pradhan, B. (2015). A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto International, 30(8), 858–881. https://doi.org/10.1080/10106049.2014.997308
  • Ansong, D., Ansong, E. K., Ampomah, A. O., & Adjabeng, B. K. (2015). Factors contributing to spatial inequality in academic achievement in Ghana: Analysis of district-level factors using geographically weighted regression. Applied Geography, 62, 136–146. https://doi.org/10.1016/j.apgeog.2015.04.017
  • Appiah, D., Forkuo, E., Bugri, J., & Apreku, T. (2017). Geospatial analysis of land use and land cover transitions from 1986–2014 in a peri-urban Ghana. Geosciences, 7(4), 125. https://doi.org/10.3390/geosciences7040125
  • Arsanjani, J. J. Fibæk, C. S., & Vaz, E. (2018). Development of a cellular automata model using open source technologies for monitoring urbanisation in the global south: The case of Maputo, Mozambique.Habitat International, 71(), 38–48. https://doi.org/10.1016/j.habitatint.2017.11.003
  • Awotwi, A., Anornu, G. K., Quaye-Ballard, J. A., & Annor, T. (2018). Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986–2025. Land Degradation and Development, 29(10), 3331–3343. https://doi.org/10.1002/ldr.3093
  • Badwi, I. M., El_barmelgy, M. M., & El_din Ouf, A. S. (2022). Modeling and prediction of expected informal growth in the Greater Cairo Region, Egypt. Environment and Planning B: Urban Analytics and City Science, 49(2), 427–446. https://doi.org/10.1177/23998083211002207
  • Barredo, J. I., Demicheli, L., Lavalle, C., Kasanko, M., & McCormick, N. (2004). Modelling future urban scenarios in developing countries: An application case study in Lagos, Nigeria. Environment and Planning B: Planning and Design, 31(1), 65–84. https://doi.org/10.1068/b29103
  • Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771. https://doi.org/10.1126/science.1151419
  • Batty, M. (2012). Managing complexity, reworking prediction. Environment and Planning B: Planning and Design, 39(4), 607–608. https://doi.org/10.1068/b3904ed
  • Becker, C. M., & Morrison, A. R. (2005). The determinants of urban population growth in Sub-Saharan Africa. Economic Development and Cultural Change, 36(2), 259–278. https://doi.org/10.1086/451651
  • Bisello, A., Vettorato, D., Stephens, R., & Elisei, P. (2017). Smart and sustainable planning for cities and regions: Smart and sustainable planning for cities and regions. November. Springer Nature. https://doi.org/10.1007/978-3-319-44899-2.
  • Boudet, F., MacDonald, G. K., Robinson, B. E., & Samberg, L. H. (2020). Rural-urban connectivity and agricultural land management across the global south. Global Environmental Change, 60, 101982. January 2020. https://doi.org/10.1016/j.gloenvcha.2019.101982.
  • Braimoh, A. K., & Onishi, T. (2007). Spatial determinants of urban land use change in Lagos, Nigeria. Land Use Policy, 24(2), 502–515. https://doi.org/10.1016/j.landusepol.2006.09.001
  • Bununu, Y. A. (2017). Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion. International Journal of Urban Sciences, 21(2), 217–237. https://doi.org/10.1080/12265934.2017.1284607
  • Chakraborty, A., Wilson, B., & Kashem, S. B. (2015). The pitfalls of regional delineations in land use modeling: Implications for Mumbai region and its planners. Cities, 45, 91–103. https://doi.org/10.1016/j.cities.2015.03.008
  • Chaudhuri, G., & Clarke, K. C. (2013). The SLEUTH land use change Model: A review. The International Journal of Environmental Resources Research, 1(1), 88–104.
  • Cobbinah, P. B., Erdiaw-Kwasie, M. O., & Amoateng, P. (2015). Africa’s urbanisation: Implications for sustainable development. Cities, 47, 62–72. https://doi.org/10.1016/j.cities.2015.03.013
  • D’Amour, C. B., Reitsma, F., Baiocchi, G., Barthel, S., Güneralp, B., Erb, K. H., Haberl, H., Creutzig, F., & Seto, K. C. (2017). Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 8939–8944. https://doi.org/10.1073/pnas.1606036114
  • Dodman, D., Leck, H., Rusca, M., & Colenbrander, S. (2017). African Urbanisation and Urbanism: Implications for risk accumulation and reduction. International Journal of Disaster Risk Reduction, 26(June), 7–15. https://doi.org/10.1016/j.ijdrr.2017.06.029
  • Effiong, E. L. (2018). On the urbanization-pollution nexus in Africa: A semiparametric analysis. Quality and Quantity, 52(1), 445–456. https://doi.org/10.1007/s11135-017-0477-8
  • Feng, Y., & Tong, X. (2017). Calibrating nonparametric cellular automata with a generalized additive model to simulate dynamic urban growth. Environmental Earth Sciences, 76(14). https://doi.org/10.1007/s12665-017-6828-x
  • Fitawok, M. B., Derudder, B., Minale, A. S., Passel, Adgo, E., Nyssen, J., & Van Passel, S. (2020). Modeling the impact of urbanization on land-use change in Bahir Dar City, Ethiopia: An Integrated Cellular Automata–Markov chain approach. Land, 9(4), 115. https://doi.org/10.3390/land9040115
  • Fitawok, M. B., Derudder, B., Minale, A. S., Van, S., Adgo, E., & Nyssen, J. (2023). Stakeholder perspectives on farmers ’ resistance towards urban land-use changes in Bahir Dar, Ethiopia. Journal of Land Use Science, 18(1), 25–38. https://doi.org/10.1080/1747423X.2023.2181416
  • Fitawok, M. B., Derudder, B., Minale, A. S., Van Passel, S., Adgo, E., & Nyssen, J. (2022). Analyzing the impact of land expropriation program on farmers’ livelihood in urban fringes of Bahir Dar, Ethiopia. Habitat International, 129, 102674. https://doi.org/10.1016/J.HABITATINT.2022.102674
  • Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use/land cover changes in the andassa watershed, Blue Nile Basin, Ethiopia. Science of the Total Environment, 619-620, 1394–1408. https://doi.org/10.1016/j.scitotenv.2017.11.191
  • Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S. K. K., Ghosh, S., Mitra, D., Ghosh, T., & Hazra, S. (2017). Application of cellular automata and Markov-chain model in geospatial environmental modeling- a review. Remote Sensing Applications: Society & Environment, 5(January), 64–77. https://doi.org/10.1016/j.rsase.2017.01.005
  • Guerrero, L. A., Maas, G., Hogland, W., Abarca, L., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Management, 33(1), 220–232. https://doi.org/10.1016/j.wasman.2012.09.008
  • Güneralp, B., Lwasa, S., Masundire, H., Parnell, S., Seto, K. C., Parnell, S., Masundire, H., Güneralp, B., & Lwasa, S. (2017). Urbanization in Africa: Challenges and opportunities for conservation. Environmental Research Letters, 13(1), 015002. https://doi.org/10.1088/1748-9326/aa94fe
  • Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. September 2015. https://doi.org/10.1016/j.apgeog.2015.06.015.
  • Huang, S. L., Wang, S. H., & Budd, W. W. (2009). Sprawl in Taipei’s peri-urban zone: Responses to spatial planning and implications for adapting global environmental change. Landscape and Urban Planning, 90(1–2), 20–32. https://doi.org/10.1016/j.landurbplan.2008.10.010
  • Hyandye, C., & Martz, L. W. (2017). A markovian and cellular automata land-use change predictive model of the usangu catchment. International Journal of Remote Sensing, 38(1), 64–81. https://doi.org/10.1080/01431161.2016.1259675
  • Jagarnath, M., Thambiran, T., Gebreslasie, M., & Jagarnath, M. (2019). Modelling urban land change processes and patterns for climate change planning in the Durban metropolitan area, South Africa. Journal of Land Use Science, 14(1), 81–109. https://doi.org/10.1080/1747423X.2019.1610809
  • Jat, M. K., Choudhary, M., & Saxena, A. (2017). Application of geo-spatial techniques and cellular automata for modelling urban growth of a heterogeneous urban fringe. The Egyptian Journal of Remote Sensing & Space Science, 20(2), 223–241. https://doi.org/10.1016/j.ejrs.2017.02.002
  • Jokar Arsanjani, J., Fibæk, C. S., & Vaz, E. (2018). Development of a cellular automata model using open source technologies for monitoring urbanisation in the global south: The case of Maputo, Mozambique. Habitat International, 71(November 2017), 38–48. https://doi.org/10.1016/j.habitatint.2017.11.003
  • Kabaria, C. W., Molteni, F., Mandike, R., Chacky, F., Noor, A. M., Snow, R. W., & Linard, C. (2016). Mapping intra-urban malaria risk using high resolution satellite imagery: A case study of Dar es salaam. International Journal of Health Geographics, 15(1), 1–12. https://doi.org/10.1186/s12942-016-0051-y
  • Kamusoko, C., Aniya, M., Adi, B., & Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe - simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29(3), 435–447. https://doi.org/10.1016/j.apgeog.2008.10.002
  • Kamusoko, C., & Gamba, J. (2015). Simulating urban growth using a random forest-cellular automata (RF-CA) model. ISPRS International Journal of Geo-Information, 4(2), 447–470. https://doi.org/10.3390/ijgi4020447
  • Kniveton, D., Smith, C., & Wood, S. (2011). Agent-based model simulations of future changes in migration flows for Burkina Faso. Global Environmental Change, 21(SUPPL. 1), S34–S40. https://doi.org/10.1016/j.gloenvcha.2011.09.006
  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3465–3472. https://doi.org/10.1073/pnas.1100480108
  • Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., Swilling, M., & Thomas, C. J. (2012). Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustainability Science, 7(SUPPL. 1), 25–43. https://doi.org/10.1007/s11625-011-0149-x
  • Li, X., & Gong, P. (2016). Urban growth models: Progress and perspective. Science Bulletin, 61(21), 1637–1650. https://doi.org/10.1007/s11434-016-1111-1
  • Linard, C., Tatem, A. J., & Gilbert, M. (2013). Modelling spatial patterns of urban growth in africa. Applied Geography, 44, 23–32. https://doi.org/10.1016/j.apgeog.2013.07.009
  • Liu, Y., Batty, M., Wang, S., & Corcoran, J. (2019). Modelling urban change with cellular automata: Contemporary issues and future research directions. Progress in Human Geography, 45(1), 3–24. https://doi.org/10.1177/0309132519895305
  • Liu, Y., Li, L., Chen, L., Cheng, L., Zhou, X., Cui, Y., Li, H., Liu, W., & Chen, M. (2019). Urban growth simulation in different scenarios using the SLEUTH model: A case study of Hefei, East China. PloS ONE, 14(11), 1–22. https://doi.org/10.1371/journal.pone.0224998
  • Li, X., Zhou, Y., Eom, J., Yu, S., & Asrar, G. R. (2019). Projecting global urban area growth through 2100 based on Historical Time Series Data and future shared socioeconomic pathways. Earth’s Future, 7(4), 351–362. https://doi.org/10.1029/2019EF001152
  • Lusugga Kironde, J. M. (2006). The regulatory framework, unplanned development and urban poverty: Findings from Dar es Salaam, Tanzania. Land Use Policy, 23(4), 460–472. https://doi.org/10.1016/j.landusepol.2005.07.004
  • Lüthi, C., McConville, J., & Kvarnström, E. (2010). Community-based approaches for addressing the urban sanitation challenges. International Journal of Urban Sustainable Development, 1(1–2), 49–63. https://doi.org/10.1080/19463131003654764
  • Mahmoud, M. I., Duker, A., Conrad, C., Thiel, M., & Ahmad, H. S. (2016). Analysis of settlement expansion and urban growth modelling using geoinformation for assessing potential impacts of urbanization on climate in Abuja City, Nigeria. Remote Sensing, 8(3). https://doi.org/10.3390/rs8030220
  • Marondedze, A. K., & Schütt, B. (2019). Dynamics of land use and land cover changes in Harare, Zimbabwe: A case study on the linkage between drivers and the axis of urban expansion. Land, 8(10), 155. https://doi.org/10.3390/land8100155
  • Mauck, B. A., & Warburton, M. (2014). Mapping areas of future urban growth in the mgeni catchment. Journal of Environmental Planning and Management, 57(6), 920–936. https://doi.org/10.1080/09640568.2013.775062
  • Mauck, B. A., Warburton, M., Mubea, K., Goetzke, R., Menz, G., Chaudhuri, G., & Clarke, K. C. (2013). Simulating urban growth in Nakuru (Kenya) using java-based modelling platform XULU. Proceedings - UKSim-AMSS 7th European Modelling Symposium on Computer Modelling and Simulation, EMS 2013, 57(6), 103–108. https://doi.org/10.1109/EMS.2013.18
  • Moein, M., Asgarian, A., Sakieh, Y., Soffianian, A., So, A., & Soffianian, A. (2018). Scenario-based analysis of land-use competition in central Iran: Finding the trade-off between urban growth patterns and agricultural productivity. Sustainable Cities and Society, 39(September 2017), 557–567. https://doi.org/10.1016/j.scs.2018.03.014
  • Mohamed, A., & Worku, H. (2020). Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate, 31, 100545. October 2019. https://doi.org/10.1016/j.uclim.2019.100545.
  • Mundia, C. N., & Murayama, Y. (2010). Modeling spatial processes of urban growth in African cities: A case study of Nairobi City. Urban Geography, 31(2), 259–272. https://doi.org/10.2747/0272-3638.31.2.259
  • Musa, S. I., Hashim, M., & Reba, M. N. M. (2017). A review of geospatial-based urban growth models and modelling initiatives. Geocarto International, 32(8), 813–833. https://doi.org/10.1080/10106049.2016.1213891
  • Musa, S. I., Hashim, M., & Reba, M. N. M. (2019). Geospatial modelling of urban growth for sustainable development in the Niger Delta Region, Nigeria. International Journal of Remote Sensing, 40(8), 3076–3104. https://doi.org/10.1080/01431161.2018.1539271
  • Mushore, T. D., Odindi, J., Dube, T., &, and Mutanga, O. (2017). Prediction of future urban surface temperatures using medium resolution satellite data in Harare metropolitan city, Zimbabwe. Building and Environment, 122, 397–410. https://doi.org/10.1016/j.buildenv.2017.06.033
  • Nagendra, H., Bai, X., Brondizio, E. S., & Lwasa, S. (2018). The urban south and the predicament of global sustainability. Nature Sustainability, 1(July), 341–349. https://doi.org/10.1038/s41893-018-0101-5
  • Naghibi, F., Delavar, M. R., & Pijanowski, B. (2016). Urban growth modeling using cellular automata with multi-temporal remote sensing images calibrated by the artificial bee colony optimization algorithm. Sensors (Switzerland), 16(12), 2122. https://doi.org/10.3390/s16122122
  • Osman, T., Shaw, D., & Kenawy, E. (2018). An integrated land use change model to simulate and predict the future of Greater Cairo metropolitan region. Journal of Land Use Science, 13(6), 565–584. https://doi.org/10.1080/1747423X.2019.1581849
  • Pontius, G. R., & Malanson, J. (2005). Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19(2), 243–265. https://doi.org/10.1080/13658810410001713434
  • Rabehi, W., Guerfi, M., Mahi, H., & Rojas-Garcia, E. (2019). Spatiotemporal monitoring of coastal urbanization dynamics: Case study of Algiers’ bay, Algeria. The Journal of the Indian Society of Remote Sensing, 47(11), 1917–1936. https://doi.org/10.1007/s12524-019-01037-y
  • Radwan, T. M., Blackburn, G. A., Whyatt, J. D., & Atkinson, P. M. (2019). Dramatic loss of agricultural land due to urban expansion Threatens Food Security in the Nile Delta, Egypt. Remote Sensing, 11(3), 332. https://doi.org/10.3390/rs11030332
  • Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and Modeling of Spatiotemporal Urban Expansion and land-Use/Land-cover change using integrated Markov chain cellular automata Model. ISPRS International Journal of Geo-Information, 6(9), 288. https://doi.org/10.3390/ijgi6090288
  • Robson, J. S., Ayad, H. M., Wasfi, R. A., & El-Geneidy, A. M. (2012). Spatial disintegration and arable land security in Egypt: A study of small- and moderate-sized urban areas. Habitat International, 36(2), 253–260. https://doi.org/10.1016/j.habitatint.2011.10.001
  • Saghir, J., & Santoro, J. (2018). Urbanization in Sub-Saharan Africa. Meeting challenges by bridging stakeholders. Center for Strategic and International Studies.
  • Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108–122. https://doi.org/10.1016/j.landurbplan.2010.03.001
  • Schwarz, N., Flacke, J., & Sliuzas, R. (2016). Modelling the impacts of urban upgrading on population dynamics. Environmental Modelling and Software, 78(2), 150–162. https://doi.org/10.1016/j.envsoft.2015.12.009
  • Schweitzer, F. (2006). A growing urban problem. Nature, 441(7095), 815–815. https://doi.org/10.1038/441815a
  • Shade, C., & Kremer, P. (2019). Predicting land use changes in Philadelphia following green infrastructure policies. Land, 8(2), 28. https://doi.org/10.3390/land8020028
  • Shafizadeh Moghadam, H., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149. https://doi.org/10.1016/j.apgeog.2013.01.009
  • Shimoni, M., Lopez, J., Forget, Y., Wolff, E., Michellier, C., Grippa, T., Linard, C., & Gilbert, M. (2015). An urban expansion model for African cities using fused multi temporal optical and SAR data. International Geoscience and Remote Sensing Symposium (IGARSS) 2015-Novem, 1159–1162. https://doi.org/10.1109/IGARSS.2015.7325977
  • Shoko, M., & Smit, J. (2013). Use of Agent Based Modelling in the Dynamics of Slum Growth. South African Journal of Geomatics, 2(1), 54–67.
  • Simwanda, M., & Murayama, Y. (2018). Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustainable Cities and Society, 39(February), 262–274. https://doi.org/10.1016/j.scs.2018.01.039
  • Singh, S. K., Mustak, S., Srivastava, P. K., Szabó, S., & Islam, T. (2015). Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environmental Processes, 2(1), 61–78. https://doi.org/10.1007/s40710-015-0062-x
  • Tarawally, M., Wenbo, X., Weiming, H., Mushore, T. D., & Kursah, M. B. (2019). Land use/land cover change evaluation using land change modeller: A comparative analysis between two main cities in Sierra Leone. Remote Sensing Applications: Society & Environment, 16(September), 100262. https://doi.org/10.1016/j.rsase.2019.100262
  • Tewolde, M. G., & Cabral, P. (2011). Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing, 3(10), 2148–2165. https://doi.org/10.3390/rs3102148
  • Thite, M. (2011). Smart cities: Implications of urban planning for human resource development. Human Resource Development International, 14(5), 623–631. https://doi.org/10.1080/13678868.2011.618349
  • Torrens, P. M. (2003). Automata-based models of urban systems. Advanced Spatial Analysis, 61–79.
  • Triantakonstantis, D., & Mountrakis, G. (2012). Urban growth prediction: A review of computational models and human perceptions. Journal of Geographic Information System, 04(6), 555–587. https://doi.org/10.4236/jgis.2012.46060
  • Turok, I., & McGranahan, G. (2013). Urbanization and economic growth: The arguments and evidence for Africa and Asia. Environment and Urbanization, 25(2), 465–482. https://doi.org/10.1177/0956247813490908
  • UN-Habitat. (2016). Urbanization and Development: Emerging Futures. In UN Habitat World Cities Report 2016.
  • United Nations. (2016). The World’s Cities in 2016: Data booklet (Report No. ST/ESA/ SER. A/392). Department of Economic and Social Affairs, Population Division.
  • United Nations. (2018). World urbanization prospects: The 2018 revision. Department of Economic and Social Affairs.
  • Vermeiren, K., Adiyia, B., Loopmans, M., Tumwine, F. R., & Van Rompaey, A. (2013). Will urban farming survive the growth of African cities: A case-study in Kampala (Uganda)? Land Use Policy, 35, 40–49. https://doi.org/10.1016/j.landusepol.2013.04.012
  • Vermeiren, K., Vanmaercke, M., Beckers, J., & Van Rompaey, A. (2016). ASSURE: A model for the simulation of urban expansion and intra-urban social segregation. International Journal of Geographical Information Science, 30(12), 2377–2400. https://doi.org/10.1080/13658816.2016.1177641
  • Wahyudi, A., & Liu, Y. (2016). Cellular automata for urban growth modelling. International Review for Spatial Planning and Sustainable Development, 4(2), 60–75. https://doi.org/10.14246/irspsd.4.2_60
  • Wang, X., Van Dam, K. H., Triantafyllidis, C., Koppelaar, R. H. E. M., & Shah, N. (2017). Water and Energy Systems in sustainable city development: A case of Sub-saharan Africa. Procedia Engineering, 198(September 2016), 948–957. https://doi.org/10.1016/j.proeng.2017.07.140
  • White, R., & Engelen, G. (1993). Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use patterns. Environment & Planning A: Economy & Space, 25(8), 1175–1199. https://doi.org/10.1068/a251175
  • Xu, G., Dong, T., Cobbinah, P. B., Jiao, L., Sumari, N. S., Chai, B., & Liu, Y. (2019). Urban expansion and form changes across African cities with a global outlook: Spatiotemporal analysis of urban land densities. Journal of Cleaner Production, 224(June), 802–810. https://doi.org/10.1016/j.jclepro.2019.03.276

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.