284
Views
2
CrossRef citations to date
0
Altmetric
Articles

Above- and below-ground species richness of bryophytes in Estonian mires: diversity and differences

, , &

References

  • Barbé M, Fenton NJ, Bergeron Y. 2016. So close and yet so far away: long-distance dispersal events govern bryophyte metacommunity reassembly. Journal of Ecology. 104:1707–1719.
  • Bisang I. 1996. Quantitative analysis of the diaspore banks of bryophytes and ferns in cultivated fields in Switzerland. Lindbergia. 21:9–20.
  • Bu Z-J, Sundberg S, Feng L, Li H-K, Zhao H-Y, Li H-C. 2017. The Methuselah of plant diaspores: Sphagnum spores can survive in nature for centuries. New Phytologist. 214:1398–1402.
  • Callaghan DA, During HJ, Forrest LL, Wilkinson K. 2020. Neglected and at risk: bryophyte diaspore banks of coastal dune systems. Journal of Bryology. 42:223–234.
  • Campbell DR, Rochefort L, Lavoie C. 2003. Determining the immigration potential of plants colonizing disturbed environments: the case of milled peatlands in Quebec. Journal of Applied Ecology. 40:78–91.
  • Caners RT, Macdonald SE, Belland RJ. 2009. Recolonization potential of bryophyte diaspore banks in harvested boreal mixed-wood forest. Plant Ecology. 204:55–68.
  • Davis DD, Atwood JJ. 2010. Mosses associated with coalmines and coal seams in western Pennsylvania. Evansia. 27:11–17.
  • During HJ. 1997. Bryophyte diaspore banks. In: Longton RE, editor. Advances in bryology, vol. 6. Berlin: International Association of Bryologists; p. 103–134.
  • During HJ. 2001. Diaspore banks. The Bryologist. 104:92–97.
  • Elbert W, Weber D, Burrows S, Steinkamp J, Düdel D, Andreae MO, Pöschl U. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience. 5:459–462.
  • Feng L, Sundberg S, Ooi MKJ, Wu Y-H, Wang M, Bu Z-J. 2018. Oxygen-deficiency and allelochemicals affect Sphagnum spore persistence in peatlands. Plant and Soil. 432:403–413.
  • Frey W, Frahm J-P, Fischer E, Lobin W. 2006. The liverworts, mosses and ferns of Europe. Heidelberg: Gustav Fischer.
  • Gunnarsson U, Söderström L. 2007. Can artificial introductions of diaspore fragments work as a conservation tool for maintaining populations of the rare peatmoss Sphagnum angermanicum? Biological Conservation. 135:450–458.
  • Hájek M, Jiroušek M, Navrátilová J, Horodyská E, Peterka T, Plesková Z, Navrátil J, Hájková P, Hájek T. 2015. Changes in the moss layer of Czech fens indicate early succession triggered by nutrient enrichment. Preslia. 87:279–301.
  • Hájek M, Horsáková V, Hájková P, Coufal R, Dítě D, Němec T, Horsák M. 2020. Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Science of The Total Environment. 719:134693.
  • Hock Z, Szövényi P, Schneller JJ, Tóth Z, Urmi E. 2008. Bryophyte diaspore bank: a genetic memory? Genetic structure and genetic diversity of surface populations and diaspore bank in the liverwort Mannia fragrans (Aytoniaceae). American Journal of Botany. 95:542–548.
  • Hodgetts N, Lockhart N. 2020. Checklist and country status of European bryophytes – update 2020. Irish Wildlife Manuals, no. 123. Dublin: National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht, Ireland.
  • Hodgetts N, Cálix M, Englefield E, Fettes N, García Criado M, Patin L, Nieto A, Bergamini A, Bisang I, Baisheva E, et al. 2019. A miniature world in decline: European Red List of mosses, liverworts and hornworts. Brussels: IUCN.
  • Huopalainen M, Tuittila E-S, Vanha-Majamaa I, Nousiainen H, Laine J, Vasander H. 2000. The potential of soil seed banks for revegetation of bogs in SW Finland after long-term aerial pollution. Annales Botanici Fennici. 37:1–9.
  • IBM. 2020. IBM SPSS Statistics. [accessed 2020 Nov 15]. https://www.ibm.com/products/spss-statistics.
  • Iglesias N, Delgado V, Ederra A. 2015. A comparison between the diaspore bank and above-ground bryoflora in the beech forests of Navarra (northern Spain). Cryptogamie Bryologie. 36:19–40.
  • Ingerpuu N, Sarv M. 2015. Effect of grazing on plant diversity of coastal meadows in Estonia. Annales Botanici Fennici. 52:84–92.
  • Ingerpuu N, Vellak K. 2018. Are viable diaspores valid members of the local bryophyte flora? Journal of Bryology. 40:193–195.
  • Ingerpuu N, Nurkse K, Vellak K. 2014. Bryophytes in Estonian mires. Estonian Journal of Ecology. 63:3–14.
  • Ingerpuu N, Vellak K, Ehrlich L. 2018. Revised Red Data List of Estonian bryophytes. Folia Cryptogamica Estonica. 55:97–104.
  • Ingerpuu N, Kupper T, Vellak K, Kupper P, Sõber J, Tullus A, Zobel M, Liira J. 2019. Response of bryophytes to afforestation, increase of air humidity, and enrichment of soil diaspore bank. Forest Ecology and Management. 432:64–72.
  • Janssen JAM, Rodwell JS, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N, Landucci F, Loidi J, Ssymank A, et al. 2016. European Red List of habitats. Part 2, Terrestrial and freshwater habitats. Luxembourg: Publications Office of the European Union.
  • Jauhiainen S. 1998. Seed and spore banks of two boreal mires. Annales Botanici Fennici. 35:197–201.
  • Jonsson BG. 1993. The bryophyte diaspore bank and its role after small-scale disturbance in a boreal forest. Journal of Vegetation Science. 4:819–826.
  • Joosten H, Tanneberger F, Moen A, editors. 2017. Mires and peatlands of Europe: status, distribution and conservation. Stuttgart: Schweizerbart Science Publishers.
  • Kooijman AM, Bakker C. 1994. The acidification capacity of wetland bryophytes as influenced by simulated clean and polluted rain. Aquatic Botany. 48:133–144.
  • Kövendi-Jakó A, Márialigeti S, Didló A, Ódor P. 2016. Environmental drivers of the bryophyte propagule bank and its comparison with forest-floor assemblage in Central European temperate mixed forests. Journal of Bryology. 38(2):118–126.
  • La Farge C, Williams KH, England JH. 2013. Regeneration of little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proceedings of the National Academy of Sciences of the United States of America. 110:9839–9844.
  • Laine J, Flatberg KI, Harju P, Timonen T, Minkkinen K, Laine A, Tuittila E-S, Vasander H. 2019. Sphagnum mosses – the stars of European mires. Helsinki: University of Helsinki.
  • Lett S, Nilsson M-C, Wardle DA, Dorrepaal E. 2016. Bryophyte traits explain climate-warming effects on tree seedling establishment. Journal of Ecology. 105:496–506.
  • Lewis LR, Behling E, Gousse H, Qian E, Elphick CS, Lamarre J, Bêty J, Liebezeit J, Rozzi R, Goffinet B. 2014. First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. PeerJ. 2:e424. Doi:https://doi.org/10.7717/peerj.424.
  • Linder M, editor. 2017. Diversity of nature in Estonia. Estonian nature conservation in 2015. Tallinn: Estonian Environmental Agency.
  • Lindo Z, Nilsson M-C, Gundale MJ. 2013. Bryophyte–cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Global Change Biology. 19:2022–2035.
  • Lönnell N, Hylander K, Jonsson BG, Sundberg S. 2012. The fate of the missing spores – patterns of realized dispersal beyond the closest vicinity of a sporulating moss. PLoS ONE. 7(7):e41987. Doi:https://doi.org/10.1371/journal.pone.0041987.
  • Maciel-Silva AS, Válio IFM, Rydin H. 2012. Diaspore bank of bryophytes in tropical rain forests: the importance of breeding system, phylum and microhabitat. Oecologia. 168:321–333.
  • Malkowsky Y, Ostendorf AK, Roth-Nebelsick A. 2018. Funariaceae underground: a spore bank for Physcomitrella patens and Physcomitrium eurystomum. Herzogia. 31:791–797.
  • Mallón R, Reinoso J, Rodríguez-Oubiña J, González ML. 2006. In vitro development of vegetative propagules in Splachnum ampullaceum: brood cells and chloronematal bulbils. The Bryologist. 109:215–223.
  • McCune B, Mefford MJ. 2006. PC-ORD. Multivariate analysis of ecological data. Version 5.0 for Windows. Gleneden Beach (OR): MjM Software.
  • Paal J, Leibak E, editors. 2011. Estonian mires: inventory of habitats. Tartu: Eestimaa Looduse Fond.
  • Pacé M, Bu NJ, Paréb D, Bergeron Y. 2018. Differential effects of feather and Sphagnum spp. mosses on black spruce germination and growth. Forest Ecology and Management. 415–416:10–18.
  • Patiño J, Vanderpoorten A. 2018. Bryophyte biogeography. Critical Reviews on Plant Sciences. 37:175–209.
  • R Core Team. 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [accessed 2020 Nov 23]. https://www.r-project.org/.
  • Republic of Estonia Land Board. [date unknown]. Land information web map application. [accessed 2020 Nov 22]. https://xgis.maaamet.ee/maps/.
  • Rosenstiel TN, Eppley SM. 2009. Long-lived sperm in the geothermal bryophyte Pohlia nutans. Biology Letters. 5:857–860.
  • Ross-Davis AL, Frego KA. 2004. Propagule sources of forest floor bryophytes: spatiotemporal compositional patterns. The Bryologist. 107:88–97.
  • Skotnicki ML, Selkirk PM. 2006. Plant biodiversity in an extreme environment. Genetic studies of origin, diversity and evolution in the Antarctic. In: Bergstrom DN, Convey P, Huiskes AHL, editors. Trends in Antarctic terrestrial and limnetic ecosystems. Amsterdam: Springer; p. 161–175.
  • Staunch A, Redlecki M, Wooten J, Sleeper J, Titus J. 2012. Moss and soil substrates interact with moisture level to influence germination by three wetland tree species. International Scholarly Research Network ISRN Botany. 2012:ID 456051 [6 p.]. doi:10.5402/2012/456051.
  • Sundberg S, Rydin H. 2000. Experimental evidence for a persistent spore bank in Sphagnum. New Phytologist. 148:105–116.
  • Sundberg S, Rydin H. 2002. Habitat requirements for establishment of Sphagnum from spores. Journal of Ecology. 90:268–278.
  • Triisberg T, Karofeld E, Paal J. 2013. Factors affecting the re-vegetation of abandoned extracted peatlands in Estonia: a synthesis from field and greenhouse studies. Estonian Journal of Ecology. 62:192–211.
  • Udd D, Sundberg S, Rydin H. 2016. Multi-species competition experiments with peatland bryophytes. Journal of Vegetation Science. 27:165–175.
  • Vellak K, Ingerpuu N, Karofeld E. 2013. Eesti turbasamblad. The Sphagnum mosses of Estonia. Tartu: Tartu Ülikooli Kirjastus.
  • Wiklund K, Rydin H. 2004. Ecophysiological constraints on spore establishment in bryophytes. Functional Ecology. 18:907–913.
  • Zepeda CG, Lot A, Nemiga XA, Manjarrez J. 2014. Seed bank and established vegetation in the last remnants of the Mexican Central Plateau wetlands: the Lerma marshes. Revista de Biología Tropical. 62:455–472.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.