2
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Electrical Transport Properties of GaAs and Alas Mixed Crystals for Semiconductor Devices

Invited Paper

(Fellow)
Pages 97-107 | Received 08 Apr 1982, Published online: 10 Jul 2015

REFERENCES

  • Neuberger (M). Handbook of Electronic Materials–3–5 Semi-Conducting Compounds 1968. IFI Plenum Data Corpn New York. 7; P 8.
  • Immorlica (A A) & Pearson (G L). Velocity Saturation in n-Type AlxGa1-xAs Single Crystals. Appl. Phys. Lett. 25, 10; 1974 570–572.
  • Sugeta (T), Majerfeld (A), Saxena (A K), Robson (P N) & Hill (G). High Field Transport Properties of Ga1-xAlxAs. Proc. Biennial Conf. on Active Microwave Semiconductor Devices & Circuits (IEEE, NY). 1977a, P 45–53.
  • Sitch (JE), Majerfeld (A), Robson (PN) & Hasegawa (F). Transit Time Induced Microwave Negative Resistance in Ga1-xAlx As—GaAs Heterostructure Diodes. Electron. Lett. 11 19; 1975; 457–458.
  • Monemar (B), Shih (K K) & Petit (G D). Some Properties of the AlxGa1-xAs Alloy System. J. Appl. Phys. 47, 6; 1976; 2604–2613.
  • Casey Jr. (HC) & Panish (M B). Composition Dependence of the Ga1-xAlxAs Direct and Indirect Energy Gaps. J. Appl. Phys. 40, 12; 1969; 4910–4912.
  • Ku (SM) & Black (J F). Injection Electroluminescence in (AlxGa1-x) As Diodes of Graded Energy Gap. J. Appl. Phys. 37, 10; 1966; 3733–3740.
  • Dingle (R), Logan (R A) & Arthur (A J). The Lower Conduction Band Structure of AlxGa1-xAs. Proc. Sixth International Symp on GaAs & Related Compounds, Edinburgh Conf., Edited by C. Hilsum (The Instt. of Phys., London) 1977, P 210–215.
  • Spring Thorpe (A J), King (F D) & Becke (A). Te and Ge Doping Studies in Ga1-xAlx As. J. Electron. Mater. 4, 1; 1975; 101–118.
  • Ehrenreich (H). Band Structure and Electron Transport of GaAs. Phys. Rev. 120, 6; 1960; 1951–1963.
  • Blood (P). Electrical Properties of n-Type Epitaxial GaAs at High Temperatures. Phys. Rev. B. 36, 6; 1972; 2257–2261.
  • Balslev (I). Optical Absorption due to Inter-conduction Minimum Transitions in Gallium Arsenide. Phys. Rev. 173, 5; 1968; 762–766.
  • Onton (A), Chicotka (R J) & Yacoby (Y). Subsidiary Indirect Conduction Band Minima and Their Donor Levels in GaA and InP. Proc. Eleventh International Conf. on the Physics of Semiconductors. Warszawa Conf. (Poland Academy of Sciences, Warsaw). 2, 1972; 1023–1029.
  • Craford (M G), Shaw (R VV), Herzog (A H) & Groves (W O). Radiative Recombination Mechanisms in GaAs Diodes with and without Nitrogen Doping. J. Appl. Phys. 43, 10; 1972; 4075–4083.
  • Hutson (A R), Jayaraman (A) & Coriell (A S). Effects of High Pressure, Uniaxial Stress and Temperature on the Electrical Resistivity of n-GaAs. Phys. Rev. 155, 3; 1969; 786–792.
  • Pitt (G D) & Lees (J). Electrical Properties of the X1c Minima at Low Electric Fields from a High Pressure Experiment. Phys. Rev. B. 2, 10; 1970; 4144–4160.
  • James (LW) & Moll (J L). Transport Properties of GaAs Obtained from Photoemission Measurements. Phys. Rev. 183, 3; 1969; 740–753.
  • James (L W), Eden (R C), Moll (J L) & Spicer (W E). Location of the L1 and x3 Minima in GaAs as Determined by Photoemission Studies. Phys. Rev. 174, 3; 1968; 909–912.
  • Aspnes (D E). GaAs Lower Conduction Band Minima, Ordering and Properties. Phys. Rev. B. 14, 12; 1976; 5331–5343.
  • Adams (A R), Vinson (P J), Pickering (C), Pitt (G D) & Fawcett (W). 3-Level Conduction Band Structure of GaAs from High Stress and High Field Measurements. Electron Lett. 13, 2; 1977; 46–47.
  • Panish (MB). Phase Equilibria in the System Al-Ga-As-Sn and Electrical Properties on Sn Doped Liquid Phase Epitaxial AlxGa1-xAs. J. Appl. Phys. 44, 6; 1973; 2667–2675.
  • Saxena (A K). The Conduction Band Structure and Transport Properties of Ga1-xAlxAs Alloys. PhD Thesis 1978, Sheffield University.
  • Pitt (G D) & Stewart (C E E). The Electrical Properties of GaAs1-xPx from a High Pressure Experiment. J. Phys. C. 8, 9; 1975; 1397–1411.
  • Chevallier (J). Electrical Properties of S-Doped Gaxln1-xP Alloys. Phys. Status. Solidi(a) 14, 2; 1972; 531–539.
  • Craford (M G), Stillman (G E), Rossi (J A) & Holonyak Jr. (N). Effect of Te and S Donor Levels on the Properties of GaAs1-XPX near the Direct-Indirect Transition. Phys. Rev. 168, 3; 1968; 867–882.
  • Wolford (D J), Streetman (B G), Hsu (W Y), Dow (J D), Nelson (R J) & Holonyak Jr. (N). Evidence of Radiative Recombination in GaAs1-xPx: N (0.28 < x < 0.45) Involving Isolated Nitrogen Impurity State Associated with the Γ1, Minimum. Phys. Rev. Lett. 36, 23; 1976; 1400–1402.
  • Holonyak Jr. (N), Neuse (C J), Sirkis (M D) & Stillman (G E). Effect of Donor Impurities on the Direct-Indirect Transition in Ga(As1-xPx). Appl. Phys. Lett. 8, 4; 1966; 83–85.
  • Campos D'Olne (M D), Gouson (A), Gouskov (L) & Pons (J C). Sulphur Impurity State in Ga1-xInxSb. Phys. Status. Solidi(b). 47, 2; 1971; 137–141.
  • Nelson (R J). Long Lifetime Photoconductivity Effect in n-Type GaAlAs. Appl. Phys. Lett. 31, 5; 1977; 351–353.
  • Balland (B), Vincent (G), Bois (D) & Hirtz (P). Donor Levels Analysis in GaAlAs Double Heterostructure. Appl. Phys. Lett. 34, 1; 1979; 108–110.
  • Balland (B), Blondeau (R, Mayet (L), Cremoux(B D) & Hirtz (P). Spectroscopy of the Deep Levels in Tin Doped Ga-Al-As. Thin Solid Films. 65, 3; 1980; 275–281.
  • Lorenz (M R), Segall (B) & Woodbury (H H). Some Properties of a Double Acceptor Centre in CdTe. Phys. Rev. 134, 3A; 1964; A751–760.
  • Burkey (B C), Khosla (R P), Fischer (J R) & Losee (D L). Persistent Photoconductivity in Donor-Doped Cd1-xZnxTe. J. Appl. Phys. 47, 3; 1976; 1095–1102.
  • Black (J F) & Ku (S M). Preparation and Properties of AlAs GaAs Mixed Crystals. J. Electrochem. Soc. 113,3; 1966; 249–254.
  • Blum (J M) & Shih (K K). The Liquid Phase Epitaxy of AlxGa1-xAs for Monolithic Planar Structures. Proc. IEEE. 59, 10; 1971; 1498–1502.
  • Kaneko (K), Ayabe (M) & Watanabe (N). Electrical Properties of n-AlxGa1-xAs. Proc. Sixth International Symp. on GaAs & Related Compounds, Edinburgh Conference, Edited by C. Hilsum (The Instt of Phys. London) 1977; P 216–226.
  • Stringfellow (G B). Electron Mobility in Ga1-xAlxAs. J. Appl Phys. 50, 6; 1979; 4178–4183.
  • Neumann (H) & Flohrer (U). Electron Mobility in AlxGa1-xAs. Phys. Status Solidi.(a) 25, 2; 1974; K 145–147.
  • Saxena (A K). Deep Donor Levels and the Conduction Band Structure of Ga1-xAlxAs Alloy System. Seventh European Solid-State Device Research Conf. Brighton (The Instt. of Phys. London) 1979a.
  • Saxena (A K). Non Shallow Levels and the Conduction Band Structure of Ga1-xAlxAs. Phys. Status. Solidi (b). 96, 2; 1979b; K77–82.
  • Saxena (A K). Origin of Low Efficiency of GaAs & Ga1-xAlxAs Devices: A New Conduction Band Ordering and Deep Levels Associated with the Subsidiary L and X Minima. Proc. of the Science Academy Medals for Young Scientists. Edited by S.K. Trehan (INSA, Delhi) 1980a; 101–119.
  • Saxena (A K). Non Γ Deep Levels and the Conduction Band Structure of Ga1-xAlxAs Alloys. Phys. Status Solidi(b). 105, 2; 1981a; 777–787.
  • Saxena (A K). The Conduction Band Structure of Ga1-xAlx(As Alloys from a High Pressure Experiment. J. Phys. C. 13, 23; 1980b; 4323–4334.
  • Saxena (A K). The Conduction Band Structure of Ga1-xAlxAs Alloys from Hall Mobility Measurements at High Pressure. Int. J. Electron. 51, 6; 1981b; 779–791.
  • Saxena (A K). Theoretical Calculations of Deep Trap Energies in Ga1-xAlxAs. Ind. J. Pure & Appi. Phys. 19, 5; 1981c; 537–539.
  • Bhattacharya (PK), Majerfeld (A) & Saxena (A K). Direct Evidence of Deep Trap Emission and Capture via the L Minima in GaAs and Ga1-xAlxAs. Proc. of the Seventh International Symp. on GaAs & Related Compounds, Edited by L.F. Eastman (The Instt. Phys., London) 1979; 199–210.
  • Saxena (A K). Hall to Drift Mobility Ratio in Ga1-xAlxAs. 5.5. Commun. 39, 7; 1981d; 839–842.
  • Saxena (A K). Deep Levels in Ga1-xAlxAs under Pressure. Appl. Phys. Lett. 36, 1; 1979c; 79–81.
  • Saxena (A K). Photoconductivity Storage in Ga1-xAlxAs Alloys at Low Temperatures. S.S. Electron. 25, 2; 1981e; 127–131.
  • Saxena (A K). Identification and Characterization of Energy Levels in GaAs and Ga1-xAlxAs. Third Basic Sciences Seminar of INSA, Hyderabad. 1982a.
  • Jaros (M). A Simple Analytic Expression for Optical Cross-sections Associated with Trap Impurity States in Semiconductors. J. Phys. C. 8, 11; 1975; L264–267.
  • Zylbersztejn (A). Private Communication.
  • Hasegawa (F) & Majerfeld (A). Majority Carrier Traps in n-and p-type Epitaxial GaAs. Electron. Lett. 11, 14; 1975; 286–288.
  • White (A M), Porteous (P), Sherman (W) & Stadtmuller (A A). Photocapacitance Measurements on Deep Levels in GaAs under Hydrostatic Pressure. J. Phys. C. 10, 17; 1977; L473–L476.
  • White (A M), Dean (P J) & Porteous (P). Photocapacitance Effects of Deep Traps in Epitaxial GaAs (Schottky Barrier Diode Studies). J. Appl. Phys. 47, 7; 1976; 3230–3239.
  • Saxena (A K). Physico Chemical Origin of Majority and Minority Carrier Traps in n-type VPE and LPE GaAs. Journal of the Institution of Electronics & Telecommunication Engineers. 26, 6; 1980c; 293–297.
  • Majerfeld (A) & Bhattacharya (P K). New Technique for Identification of Deep Level Trap Emission to Indirect Conduction Minima in GaAs. Appl. Phys. Lett. 33, 3; 1978; 259–261.
  • Zylbersztejn (A). Trap Depth and Electron Capture Cross-sections Determined by Trap Refilling Experiments in Schottky Diodes. Appl Phys. Lett. 32, 2; 1978; 200–202.
  • Grimmeiss (H G), Ledebo (L A) & Meijer (E). Capture from Free Carrier Tails in the Depletion Region of Junction Barriers. Appl. Phys. Lett. 36, 4; 1980; 307–308.
  • Saxena (A K). Electrical Characterization of LPE Grown GaAs Layers. M Eng. Thesis. 1975, Sheffield University.
  • Saxena (A K). Development of GaAs Material for ral Electrification and Communication: in the book 'Role of Science and Technology in Rural and Economic Development in India'. 1982b, Magadh University Press, Gaya (in press).
  • Saxena (A K). Characterization of Deep Trapping Centres in n-Type LPE GaAs by Hall Effect. Ind. J. Pure & Appl. Phys. 18, 7; 1980d; 483–486.
  • Sugeta (T), Majerfeld (A), Saxena (A K), Robson (P N) & Hill (G). The Velocity Field Characteristics of Ga1-xAlxAs. Fourth Specialist Workshop on Active Microwave Semiconductor Devices, Baden, 1977b.
  • Sugeta (T), Majerfeld (A), Saxena (A K), Robson (P N) & Hill (G). The Velocity Field Characteristics and the Band Structure of the Ga1-xAlxAs Alloy System. Seventh European Solid-State Devices Research Conf., Brighton (The Instt. of Phys., London) 1971.
  • Sugeta (T), Majerfeld (A), Saxena (A K) & Robson (P N). (Velocity Saturation and the Conduction Band Structure of Ga1-xAlxAs under Pressure. Appl. Phys. Lett. 31, 12; 1977c; 842–844.
  • Pickering (C), Adams (A R), Pitt (G D) & Vyas (M K R). The Effect of Pressure on the High Electric Field Instabilities in n-Type GaAs. J. Phys. C. 8, 21; 1975; 129–137.
  • Pitt (G D). Solid State Physics at High Pressures. Phys. Bull. 30, 6; 1979; 301–303.
  • Whitaker (L J). Electrical Properties of n-Type Aluminium Arsenide. S.S. Commun. 8, 8; 1965; 649–652.
  • Saxena (A K). Electron Mobility in Ga1-xAlxAs Alloys. Phys. Rev. B. 24, 6; 1981f; 3295–3302.
  • Saxena (A K) & Gurumurtby (K S). Scattering Parameters from an Analysis of the Hall Electron Mobility in Ga1-xAlxAs Alloys. J. Phys. & Chem. Solids. 43, 1982c; 801–808.
  • Saxena (AK). Electron Mobility in the X-Conduction Band Minima of Ga1-xAlxAs Alloys. J. Electron. Mater. 11, 3; 1982d; 453–469.
  • Saxena (A K). Intervalley Scattering in Ga1-xAlxAs Alloys. J. Appl. Phys. 52, 9; 1981g; 5643–5646.
  • Saxena (A K). Non-equivalent Minima Scattering in Ga1-xAlz, As Alloys from Monte Carlo Method. Phys. Lett. A. 90, 1–2; 1982e; 71–73.
  • Saxena (A K). Pressure Dependence of the Hall to Drift Mobility Ratio and its Significance in Ga1-xAlxAs Alloys. Phys. Rev. B. 25, 8; 1982f; 5428–5435.
  • Saxena (AK). Ga1-xAlxAs Material for High Sensitivity Pressure Sensors. Electron. Lett. 18, 15; 1982g; 644–645.
  • Sagar (A). Experimental Investigations of Conduction Bands of GaSb. Phys. Rev. 117, 1; 1960; 93–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.